SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Extended search

WFRF:(Karlsson Magnus)
 

Search: WFRF:(Karlsson Magnus) > Effects of an 8-yea...

Effects of an 8-year childhood physical activity intervention on musculoskeletal gains and fracture risk

Cöster, Marcus E. (author)
Lund University,Lunds universitet,Ortopedi - klinisk och molekylär osteoporosforskning,Forskargrupper vid Lunds universitet,Orthopedics - Clinical and Molecular Osteoporosis Research,Lund University Research Groups,Skåne University Hospital
Rosengren, Björn E. (author)
Lund University,Lunds universitet,Ortopedi - klinisk och molekylär osteoporosforskning,Forskargrupper vid Lunds universitet,Orthopedics - Clinical and Molecular Osteoporosis Research,Lund University Research Groups,Skåne University Hospital
Karlsson, Caroline (author)
Lund University,Lunds universitet,Ortopedi - klinisk och molekylär osteoporosforskning,Forskargrupper vid Lunds universitet,Orthopedics - Clinical and Molecular Osteoporosis Research,Lund University Research Groups,Skåne University Hospital
show more...
Dencker, Magnus (author)
Lund University,Lunds universitet,Klinisk fysiologi och nuklearmedicin, Malmö,Forskargrupper vid Lunds universitet,Clinical Physiology and Nuclear Medicine, Malmö,Lund University Research Groups,Skåne University Hospital
Karlsson, Magnus K. (author)
Lund University,Lunds universitet,Ortopedi - klinisk och molekylär osteoporosforskning,Forskargrupper vid Lunds universitet,Orthopedics - Clinical and Molecular Osteoporosis Research,Lund University Research Groups,Skåne University Hospital
show less...
 (creator_code:org_t)
Elsevier BV, 2016
2016
English 7 s.
In: Bone. - : Elsevier BV. - 8756-3282. ; 93, s. 139-145
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background Physical activity (PA) in childhood is associated with musculoskeletal benefits while the effect on fracture risk is yet to be determined. The aim of this study was to evaluate whether extension of a PA intervention leads to improvement in musculoskeletal traits with an accompanied reduced fracture risk. We hypothesized that the PA program would have beneficial effects in both sexes, but more so in girls since they tend to be less physically active than boys during this time frame. Methods In one elementary school we increased physical education (PE) from 60 to 200 min per school week and followed 65 girls and 93 boys from a mean age of 7 years until a mean age of 15 years. Thirty-nine girls and 37 boys in three other schools continued with 60 min of PE per week during the same years and served as controls. We measured bone mineral content (BMC), areal bone mineral density (aBMD), and bone area annually with dual energy X-ray absorptiometry, and leg muscle strength with a computerized dynamometer. In 3534 children within the same PE program (1339 in the intervention and 2195 in the control group) we registered incident fractures during the 8-year study period and estimated annual sex-specific fracture incidence rate ratios (IRRs). Results Girls in the intervention group annually gained more total body less head aBMD, spine aBMD (p < 0.01), femoral neck BMC (p < 0.05), lumbar vertebrae size (p < 0.05), and knee flexion strength (p < 0.05) than girls in the control cohort. In boys we found no group differences. There was an inverse correlation between number of years with extra PE and the annual IRR of sustaining fractures in both girls (r = − 0.90 (95% CI − 0.98 to − 0.51); p < 0.001) and boys (r = − 0.74 (95% CI − 0.94 to − 0.02); p < 0.05). Conclusion In this 8-year pediatric school-based moderate exercise intervention program there is an inverse correlation in both sexes between annual IRR and each additional year of extra PA. A sub-cohort of girls in the intervention group had greater gains in bone mass, bone size, and muscle strength, which could possibly explain the inverse correlation between years within the PA program and fracture risk, while in boys the reason for the inverse correlation remains unknown. It should be noted that differences in unreported factors such as skeletal maturity status, diet, and spare time PA could confound our inferences. That is, true causality cannot be stated.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Ortopedi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Orthopaedics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Pediatrik (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Pediatrics (hsv//eng)

Keyword

Bone mineral density
Children
Growth
Muscle strength
Physical activity

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • Bone (Search for host publication in LIBRIS)

To the university's database

Find more in SwePub

By the author/editor
Cöster, Marcus E ...
Rosengren, Björn ...
Karlsson, Caroli ...
Dencker, Magnus
Karlsson, Magnus ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Orthopaedics
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Pediatrics
Articles in the publication
Bone
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view