Sök i LIBRIS databas

  Utökad sökning


Sökning: onr:"swepub:oai:dspace.mah.se:2043/1248" > Hydride-induced emb...

Hydride-induced embrittlement and fracture in metals - effects of stress and temperature distribution

Varias, A G (författare)
Massih, Ali R (författare)
Malmö University School of Technology. (creator_code:org_t)
Malmö University School of Technology. (creator_code:org_t)
Ingår i: Journal of the Mechanics and Physics of Solids. - Elsevier Science Ltd.. - 0022-5096. ; 50:7, s. 1469-1510
Läs hela texten (fulltext)
visa fler...
Läs hela texten (fulltext)
visa färre...
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
  • A mathematical model for the hydrogen embrittlement of hydride forming metals has been developed. The model takes into account the coupling of the operating physical processes, namely: (i) hydrogen diffusion, (ii) hydride precipitation, (iii) non-mechanical energy flow and (iv) hydride/solid-solution deformation. Material damage and crack growth are also simulated by using de-cohesion model, which takes into account the time variation of energy of de-cohesion, due to the time-dependent process of hydride precipitation. The bulk of the material, outside the de-cohesion layer, is assumed to behave elastically. The hydrogen embrittlement model has been implemented numerically into a finite element framework and tested successfully against experimental data and analytical solutions on hydrogen thermal transport (in: Wunderlich, W. (Ed.), Proceedings of the European Conference on Computational Mechanics, Munich, Germany, 1999, J. Nucl. Mater. (2000a) 279 (2–3) 273). The model has been used for the simulation of Zircaloy-2 hydrogen embrittlement and delayed hydride cracking initiation in (i) a boundary layer problem of a semi-infinite crack, under mode I loading and constant temperature, and (ii) a cracked plate, under tensile stress and temperature gradient. The initial and boundary conditions in case (ii) are those encountered in the fuel cladding of light water reactors, during operation. The effects of near-tip stress intensification as well as of temperature gradient on hydride precipitation and material damage have been studied. The numerical simulation predicts hydride precipitation at a small distance from the crack-tip. When the remote loading is sufficient, the near-tip hydrides fracture. Thus a microcrack is generated, which is separated from the main crack by a ductile ligament, in agreement with experimental observations


Chemo-mechanical processes
Cohesive zone
Crack propagation

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Varias, A G
Massih, Ali R
Artiklar i publikationen
Journal of the M ...
Av lärosätet
Malmö universitet

Sök utanför SwePub

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy