SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-107611"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-107611" > Multispectral MRI s...

Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines

Damangir, Soheil (författare)
Karolinska Institutet
Manzouri, Amirhossein (författare)
Oppedal, Ketil (författare)
visa fler...
Carlsson, Stefan (författare)
KTH,Datorseende och robotik, CVAP
Firbank, Michael J. (författare)
Sonnesyn, Hogne (författare)
Tysnes, Ole-Bjorn (författare)
O'Brien, John T. (författare)
Beyer, Mona K. (författare)
Westman, Eric (författare)
Karolinska Institutet
Aarsland, Dag (författare)
Karolinska Institutet
Wahlund, Lars-Olof (författare)
Karolinska Institutet
Spulber, Gabriela (författare)
Karolinska Institutet
visa färre...
 (creator_code:org_t)
Elsevier BV, 2012
2012
Engelska.
Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X .- 1878-5883. ; 322:1-2, s. 211-216
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • White matter changes (WMC) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMC labor intensive and prone to subjective bias. We present a fast, fully automated method for WMC segmentation using a cascade of reduced support vector machines (SVMs) with active learning. Data of 102 subjects was used in this study. Two MRI sequences (T1-weighted and FLAIR) and masks of manually outlined WMC from each subject were used for the image analysis. The segmentation framework comprises pre-processing, classification (training and core segmentation) and post-processing. After pre-processing, the model was trained on two subjects and tested on the remaining 100 subjects. The effectiveness and robustness of the classification was assessed using the receiver operating curve technique. The cascade of SVMs segmentation framework outputted accurate results with high sensitivity (90%) and specificity (99.5%) values, with the manually outlined WMC as reference. An algorithm for the segmentation of WMC is proposed. This is a completely competitive and fast automatic segmentation framework, capable of using different input sequences, without changes or restrictions of the image analysis algorithm.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Neurologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Neurology (hsv//eng)

Nyckelord

MRI
White matter changes
SVM
Tissue segmentation
Multispectral image processing

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy