SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:su-102293"
 

Sökning: onr:"swepub:oai:DiVA.org:su-102293" > Classifying social ...

Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure

Frick, Andreas (författare)
Uppsala universitet,Institutionen för psykologi
Gingnell, Malin (författare)
Uppsala universitet,Institutionen för psykologi,Obstetrik & gynekologi
Marquand, Andre F. (författare)
visa fler...
Howner, Katarina (författare)
Fischer, Håkan (författare)
Stockholms universitet,Psykologiska institutionen
Kristiansson, Marianne (författare)
Williams, Steven C. R. (författare)
Fredrikson, Mats (författare)
Uppsala universitet,Institutionen för psykologi
Furmark, Tomas (författare)
Uppsala universitet,Institutionen för psykologi
Marquand, Andre F (författare)
Williams, Steven C R (författare)
Marquand, AF (författare)
Howner, K (författare)
Karolinska Institutet
Gingnell, M (författare)
Fredrikson, M (författare)
Karolinska Institutet
Fischer, H (författare)
Williams, SCR (författare)
Frick, A (författare)
Furmark, T (författare)
Kristiansson, M (författare)
Karolinska Institutet
visa färre...
 (creator_code:org_t)
2014
2014
Engelska.
Ingår i: Behavioural Brain Research. - 0166-4328 .- 1872-7549. ; 259, s. 330-335
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD.

Ämnesord

SOCIAL SCIENCES  -- Psychology (hsv//eng)
SAMHÄLLSVETENSKAP  -- Psykologi (hsv//swe)

Nyckelord

Support vector machine
Classification
Social anxiety disorder
Multivoxel pattern analysis
Biomarker

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy