SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:su-196966"
 

Sökning: onr:"swepub:oai:DiVA.org:su-196966" > SNIascore :

SNIascore : Deep-learning Classification of Low-resolution Supernova Spectra

Fremling, Christoffer (författare)
Hall, Xander J. (författare)
Coughlin, Michael W. (författare)
visa fler...
Dahiwale, Aishwarya S. (författare)
Duev, Dmitry A. (författare)
Graham, Matthew J. (författare)
Kasliwal, Mansi M. (författare)
Kool, Erik C. (författare)
Stockholms universitet,Institutionen för astronomi,Oskar Klein-centrum för kosmopartikelfysik (OKC)
Mahabal, Ashish A. (författare)
Miller, Adam A. (författare)
Neill, James D. (författare)
Perley, Daniel A. (författare)
Rigault, Mickael (författare)
Rosnet, Philippe (författare)
Rusholme, Ben (författare)
Sharma, Yashvi (författare)
Shin, Kyung Min (författare)
Shupe, David L. (författare)
Sollerman, Jesper (författare)
Stockholms universitet,Institutionen för astronomi,Oskar Klein-centrum för kosmopartikelfysik (OKC)
Walters, Richard S. (författare)
Kulkarni, S. R. (författare)
visa färre...
 (creator_code:org_t)
2021-08-05
2021
Engelska.
Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 917:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We present SNIascore, a deep-learning-based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R similar to 100) data. The goal of SNIascore is the fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of z = 0.01 to z = 0.12). For the magnitude-limited ZTF BTS survey (approximate to 70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by approximate to 60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real time to the public immediately following a finished observation during the night.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy