SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-481394"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-481394" > Flexible Machine Le...

Flexible Machine Learning Algorithms for Clinical Gait Assessment Tools

Greve, Christian (författare)
Univ Groningen, Univ Med Ctr Groningen, Dept Rehabil Med, NL-9713 GZ Groningen, Netherlands.;Univ Groningen, Univ Med Ctr Groningen, Dept Human Movement Sci, NL-9713 GZ Groningen, Netherlands.
Tam, Hobey (författare)
Oro Muscles BV, NL-9715 CJ Groningen, Netherlands.
Grabherr, Manfred (författare)
Uppsala universitet,Institutionen för medicinsk biokemi och mikrobiologi,Oro Muscles BV, NL-9715 CJ Groningen, Netherlands.
visa fler...
Ramesh, Aditya (författare)
Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, NL-9713 GZ Groningen, Netherlands.
Scheerder, Bart (författare)
Univ Groningen, Univ Med Ctr Groningen, Ctr Dev & Innovat CDI, NL-9713 GZ Groningen, Netherlands.;Univ Groningen, Univ Med Ctr Groningen, Data Sci Ctr Hlth Dash, NL-9713 GZ Groningen, Netherlands.
Hijmans, Juha M. (författare)
Univ Groningen, Univ Med Ctr Groningen, Dept Rehabil Med, NL-9713 GZ Groningen, Netherlands.
visa färre...
Univ Groningen, Univ Med Ctr Groningen, Dept Rehabil Med, NL-9713 GZ Groningen, Netherlands;Univ Groningen, Univ Med Ctr Groningen, Dept Human Movement Sci, NL-9713 GZ Groningen, Netherlands. Oro Muscles BV, NL-9715 CJ Groningen, Netherlands. (creator_code:org_t)
2022-06-30
2022
Engelska.
Ingår i: Sensors. - : MDPI. - 1424-8220. ; 22:13
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The current gold standard of gait diagnostics is dependent on large, expensive motion-capture laboratories and highly trained clinical and technical staff. Wearable sensor systems combined with machine learning may help to improve the accessibility of objective gait assessments in a broad clinical context. However, current algorithms lack flexibility and require large training datasets with tedious manual labelling of data. The current study tests the validity of a novel machine learning algorithm for automated gait partitioning of laboratory-based and sensor-based gait data. The developed artificial intelligence tool was used in patients with a central neurological lesion and severe gait impairments. To build the novel algorithm, 2% and 3% of the entire dataset (567 and 368 steps in total, respectively) were required for assessments with laboratory equipment and inertial measurement units. The mean errors of machine learning-based gait partitions were 0.021 s for the laboratory-based datasets and 0.034 s for the sensor-based datasets. Combining reinforcement learning with a deep neural network allows significant reduction in the size of the training datasets to <5%. The low number of required training data provides end-users with a high degree of flexibility. Non-experts can easily adjust the developed algorithm and modify the training library depending on the measurement system and clinical population.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Annan medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Other Medical Engineering (hsv//eng)

Nyckelord

clinical gait analysis
gait partitioning
machine learning
wearables
inertial measurement units
sensors
deep neural networks
reinforcement learning

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

  • Sensors (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst. Hantera kakor

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy