Sök i LIBRIS databas

  Utökad sökning


Sökning: onr:"swepub:oai:gup.ub.gu.se/273047" > MRI predictors of a...

MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study

ten Kate, M. (författare)
Redolfi, A. (författare)
Peira, E. (författare)
visa fler...
Bos, I. (författare)
Vos, S. J. (författare)
Vandenberghe, R. (författare)
Gabel, S. (författare)
Schaeverbeke, J. (författare)
Scheltens, P. (författare)
Blin, O. (författare)
Richardson, J. C. (författare)
Bordet, R. (författare)
Wallin, Anders, 1950 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för psykiatri och neurokemi,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry
Eckerström, Carl (författare)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för psykiatri och neurokemi,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry
Molinuevo, J. L. (författare)
Engelborghs, S. (författare)
Van Broeckhoven, C. (författare)
Martinez-Lage, P. (författare)
Popp, J. (författare)
Tsolaki, M. (författare)
Verhey, F. R. J. (författare)
Baird, A. L. (författare)
Legido-Quigley, C. (författare)
Bertram, L. (författare)
Dobricic, V. (författare)
Zetterberg, H. (författare)
Lovestone, S. (författare)
Streffer, J. (författare)
Bianchetti, S. (författare)
Novak, G. P. (författare)
Revillard, J. (författare)
Gordon, M. F. (författare)
Xie, Z. Y. (författare)
Wottschel, V. (författare)
Frisoni, G. (författare)
Visser, P. J. (författare)
Barkhof, F. (författare)
visa färre...
visa fler...
visa färre...
Ingår i: Alzheimers Research & Therapy. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
  • Background: With the shift of research focus towards the pre-dementia stage of Alzheimer's disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) epsilon 4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 +/- 72, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69. 1 +/- 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 +/- 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE epsilon 4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 +/- O. 07 in MCI and an AUC of 0.74 +/- 0.08 in CN. In CN, selected features for the classifier included APOE epsilon 4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE epsilon 4 information did not improve after additionally adding imaging measures. Conclusions: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE epsilon 4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.


MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine (hsv//eng)


Alzheimer's disease
Mild cognitive impairment
Magnetic resonance imaging
mild cognitive impairment
beta deposition
selection bias

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy