SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:lup.lub.lu.se:1d94d8bb-899a-455e-8ead-ef77ae35b69e"
 

Sökning: onr:"swepub:oai:lup.lub.lu.se:1d94d8bb-899a-455e-8ead-ef77ae35b69e" > Lifting with simple...

Lifting with simple gadgets and applications to circuit and proof complexity

De Rezende, Susanna (författare)
Institute of Mathematics of the Academy of Sciences of the Czech Republic
Meir, Or (författare)
University of Haifa
Nordstrom, Jakob (författare)
Lund University,Lunds universitet,Parallella System,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Parallel Systems,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH,University of Copenhagen
visa fler...
Pitassi, Toniann (författare)
University of Toronto
Robere, Robert (författare)
McGill University
Vinyals, Marc (författare)
Technion - Israel Institute of Technology
visa färre...
 (creator_code:org_t)
2020
2020
Engelska 7 s.
Ingår i: Proceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. - 0272-5428. - 9781728196213 - 9781728196220 ; 2020-November, s. 24-30
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve three open problems: •We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. •We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. •We give the strongest separation to-date between monotone Boolean formulas and monotone Boolean circuits. Namely, we show that the classical GEN problem, which has polynomial-size monotone Boolean circuits, requires monotone Boolean formulas of size 2{Omega(n text{polylog}(n))}. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactly with the reversible pebbling price of G. In particular, this implies that the standard decision tree complexity and the parity decision tree complexity of the corresponding falsified clause search problem are equal. This is an extended abstract. The full version of the paper is available at https://arxiv.org/abs/2001.02144.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

circuit complexity
communication complexity
cutting planes
pebble games
proof complexity
trade-offs

Publikations- och innehållstyp

kon (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy