SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:lup.lub.lu.se:51067a26-2291-43ee-aa76-23a7bf63720c"
 

Sökning: onr:"swepub:oai:lup.lub.lu.se:51067a26-2291-43ee-aa76-23a7bf63720c" > EasyNER: A Customiz...

EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text

Ahmed, Rafsan (författare)
Lund University,Lunds universitet,Celldöd, Lysosomer och Artificiell Intelligens,Forskargrupper vid Lunds universitet,LU profilområde: Naturlig och artificiell kognition,Lunds universitets profilområden,Cell Death, Lysosomes and Artificial Intelligence,Lund University Research Groups,LU Profile Area: Natural and Artificial Cognition,Lund University Profile areas
Berntsson, Petter (författare)
Lund University
Skafte, Alexander (författare)
Lund University
visa fler...
Kazemi Rashed, Salma (författare)
Lund University,Lunds universitet,Celldöd, Lysosomer och Artificiell Intelligens,Forskargrupper vid Lunds universitet,LU profilområde: Naturlig och artificiell kognition,Lunds universitets profilområden,Cell Death, Lysosomes and Artificial Intelligence,Lund University Research Groups,LU Profile Area: Natural and Artificial Cognition,Lund University Profile areas
Klang, Marcus (författare)
Lund University,Lunds universitet,Institutionen för reglerteknik,Institutioner vid LTH,Lunds Tekniska Högskola,Robotik och Semantiska System,Institutionen för datavetenskap,Department of Automatic Control,Departments at LTH,Faculty of Engineering, LTH,Robotics and Semantic Systems,Department of Computer Science,Faculty of Engineering, LTH
Barvesten, Adam (författare)
Lund University
Olde, Ola (författare)
Lund University
Lindholm, William (författare)
Lamarca Arrizabalaga, Antton (författare)
Lund University
Nugues, Pierre (författare)
Lund University,Lunds universitet,Artificiell intelligens och thoraxkirurgisk vetenskap (AICTS),Forskargrupper vid Lunds universitet,Robotik och Semantiska System,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Artificial Intelligence in CardioThoracic Sciences (AICTS),Lund University Research Groups,Robotics and Semantic Systems,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH
Aits, Sonja (författare)
Lund University,Lunds universitet,Celldöd, Lysosomer och Artificiell Intelligens,Forskargrupper vid Lunds universitet,LUCC: Lunds universitets cancercentrum,Övriga starka forskningsmiljöer,LTH profilområde: AI och digitalisering,LTH profilområden,Lunds Tekniska Högskola,LTH profilområde: Teknik för hälsa,LU profilområde: Naturlig och artificiell kognition,Lunds universitets profilområden,Cell Death, Lysosomes and Artificial Intelligence,Lund University Research Groups,LUCC: Lund University Cancer Centre,Other Strong Research Environments,LTH Profile Area: AI and Digitalization,LTH Profile areas,Faculty of Engineering, LTH,LTH Profile Area: Engineering Health,Faculty of Engineering, LTH,LU Profile Area: Natural and Artificial Cognition,Lund University Profile areas
visa färre...
 (creator_code:org_t)
2023
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Språkteknologi (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Language Technology (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Infektionsmedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Infectious Medicine (hsv//eng)

Nyckelord

Named Entity Recognition
medical text mining
natural language processing
BioNLP
COVID-19
autophagy
SARS-CoV2
BioBERT

Publikations- och innehållstyp

ovr (ämneskategori)
vet (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy