SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:lup.lub.lu.se:5aec8234-4058-4b01-9e96-08cfac9772aa"
 

Sökning: onr:"swepub:oai:lup.lub.lu.se:5aec8234-4058-4b01-9e96-08cfac9772aa" > Slowing Down Type I...

Slowing Down Type II Migration of Gas Giants to Match Observational Data

Ida, Shigeru (författare)
Tokyo Institute of Technology
Tanaka, Hidekazu (författare)
Tohoku University
Johansen, Anders (författare)
Lund University,Lunds universitet,Astronomi,Institutionen för astronomi och teoretisk fysik,Naturvetenskapliga fakulteten,Lund Observatory,Department of Astronomy and Theoretical Physics,Faculty of Science
visa fler...
Kanagawa, Kazuhiro D. (författare)
University of Szczecin
Tanigawa, Takayuki (författare)
Ichinoseki National College of Technology
visa färre...
 (creator_code:org_t)
American Astronomical Society, 2018
2018
Engelska.
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X. ; 864:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-Jupiter-mass planets are piled up at 1 au, while Jupiter/sub-Jupiter-mass planets are broadly distributed from ∼0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al., by comparing the migration, growth timescales of gas giants, and disk lifetime, and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration is tied to the disk gas accretion, recent high-resolution simulations show that the migration of gap-opening planets is decoupled from the disk gas accretion and Kanagawa et al. proposed that type II migration speed is nothing other than type I migration speed with the reduced disk gas surface density in the gap. We show that with this new formula, type II migration is significantly reduced for super-Jupiter-mass planets, if the disk accretion is driven by the disk wind as suggested by recent magnetohydrodynamic simulations. Population synthesis simulations show that super-Jupiter-mass planets remain at 1 au without any additional ingredient such as disk photoevaporation. Therefore, the mystery of the pile-up of gas giants at 1 au will be theoretically solved if the new formula is confirmed and wind-driven disk accretion dominates.

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy