Sökning: onr:"swepub:oai:lup.lub.lu.se:e59a307b-5033-4079-b214-27bb8b76719e" >
Verifying Propertie...
Verifying Properties of Bit-vector Multiplication Using Cutting Planes Reasoning
-
- Liew, Vincent (författare)
- University of Washington
-
- Beame, Paul (författare)
- University of Washington
-
- Devriendt, Jo (författare)
- Lund University,Lunds universitet,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH
-
visa fler...
-
- Elffers, Jan (författare)
- Lund University,Lunds universitet,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH
-
- Nordstrom, Jakob (författare)
- Lund University,Lunds universitet,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH,University of Copenhagen
-
Ivrii, Alexander (redaktör/utgivare)
-
Strichman, Ofer (redaktör/utgivare)
-
Hunt, Warren A. (redaktör/utgivare)
-
Weissenbacher, Georg (redaktör/utgivare)
-
visa färre...
-
(creator_code:org_t)
- 2020
- 2020
- Engelska 11 s.
-
Ingår i: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, FMCAD 2020. - 9783854480426 ; , s. 194-204
- Relaterad länk:
-
http://dx.doi.org/10... (free)
-
visa fler...
-
https://library.oape...
-
https://lup.lub.lu.s...
-
https://doi.org/10.3...
-
visa färre...
Abstract
Ämnesord
Stäng
- Systems mixing Boolean logic and arithmetic have been a long-standing challenge for verification tools such as SAT-based bit-vector solvers. Though SAT solvers can be highly efficient for Boolean reasoning, they scale poorly once multiplication is involved. Algebraic methods using Gröbner basis reduction have recently been used to efficiently verify multiplier circuits in isolation, but generally do not perform well on problems involving bit-level reasoning. We propose that pseudo-Boolean solvers equipped with cutting planes reasoning have the potential to combine the complementary strengths of the existing SAT and algebraic approaches while avoiding their weaknesses. Theoretically, we show that there are optimal-length cutting planes proofs for a large class of bit-level properties of some well known multiplier circuits. This scaling is significantly better than the smallest proofs known for SAT and, in some instances, for algebraic methods. We also show that cutting planes reasoning can extract bit-level consequences of word-level equations in exponentially fewer steps than methods based on Gröbner bases. Experimentally, we demonstrate that pseudo-Boolean solvers can verify the word-level equivalence of adder-based multiplier architectures, as well as commutativity of bit-vector multiplication, in times comparable to the best algebraic methods. We then go further than previous approaches and also verify these properties at the bit-level. Finally, we find examples of simple nonlinear bit-vector inequalities that are intractable for current bit-vector and SAT solvers but easy for pseudo-Boolean solvers.
Ämnesord
- NATURVETENSKAP -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
- NATURAL SCIENCES -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
Nyckelord
- bit-vector arithmetic
- cutting planes
- Gröbner bases
- Multiplier circuits
- pseudo-Boolean solving
- SAT solving
- verification
Publikations- och innehållstyp
- kon (ämneskategori)
- ref (ämneskategori)
Hitta via bibliotek
Till lärosätets databas