Sökning: onr:"swepub:oai:lup.lub.lu.se:ffc36c30-1050-428a-803d-a12c0bc7ef01" >
KRW composition the...
KRW composition theorems via lifting
-
- De Rezende, Susanna F. (författare)
- Institute of Mathematics of the Academy of Sciences of the Czech Republic
-
- Meir, Or (författare)
- University of Haifa
-
- Nordstrom, Jakob (författare)
- Lund University,Lunds universitet,Parallella System,Institutionen för datavetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Parallel Systems,Department of Computer Science,Departments at LTH,Faculty of Engineering, LTH,University of Copenhagen
-
visa fler...
-
- Pitassi, Toniann (författare)
- Institute for Advanced Study, Princeton
-
- Robere, Robert (författare)
- McGill University
-
visa färre...
-
(creator_code:org_t)
- 2020
- 2020
- Engelska 7 s.
-
Ingår i: Proceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. - 0272-5428. - 9781728196213 - 9781728196220 ; 2020-November, s. 43-49
- Relaterad länk:
-
http://dx.doi.org/10...
-
visa fler...
-
https://lup.lub.lu.s...
-
https://doi.org/10.1...
-
visa färre...
Abstract
Ämnesord
Stäng
- One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., mathrm{P} nsubseteq text{NC}{1}). Karchmer, Raz, and Wigderson [13] suggested to approach this problem by proving that depth complexity behaves'as expected' with respect to the composition of functions f diamond g. They showed that the validity of this conjecture would imply that mathrm{P} nsubseteq text{NC}{1}. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function, but only for few inner functions. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone version of the KRW conjecture. We prove it for every monotone inner function whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone setting, we introduce a new notion of semi-monotone composition, which combines the non-monotone complexity of the outer function with the monotone complexity of the inner function. In this setting, we prove the KRW conjecture for a similar selection of inner functions, but only for a specific choice of the outer function f.
Ämnesord
- NATURVETENSKAP -- Matematik -- Matematisk analys (hsv//swe)
- NATURAL SCIENCES -- Mathematics -- Mathematical Analysis (hsv//eng)
- NATURVETENSKAP -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
- NATURAL SCIENCES -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
Nyckelord
- circuit complexity
- circuit lower bounds
- communication complexity
- depth complexity
- depth lower bounds
- formula complexity
- formula lower bounds
- Karchmer-Wigderson relations
- KRW
- KW relations
- Lifting
- Simulation
Publikations- och innehållstyp
- kon (ämneskategori)
- ref (ämneskategori)
Hitta via bibliotek
Till lärosätets databas