Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging
Steglich, Thomas, 1983 (författare)
RISE,SIK – Institutet för livsmedel och bioteknik,Chalmers University of Technology, Sweden
Bernin, Diana, 1979 (författare)
Gothenburg University,Göteborgs universitet,Svenskt NMR-centrum vid Göteborgs universitet,Swedish NMR Centre at Göteborg University,University of Gothenburg,Chalmers University of Technology, Sweden; Swedish NMR Centre, Sweden
Röding, Magnus, 1984 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper, matematisk statistik,Department of Mathematical Sciences, Mathematical Statistics,University of Gothenburg,Chalmers University of Technology, Sweden
University of South Australia,University of South Australia, Australia
Moldin, Annelie (författare)
Lantmännen Cerealia,Lantmännen Cerealia, Sweden
Topgaard, Daniel (författare)
Lunds universitet,Lund University,Physical Chemistry,Fysikalisk kemi,Lund University, Sweden
Langton, Maud I.B.C. (författare)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för livsmedelsvetenskap,Department of Food Science,Sveriges lantbruksuniversitet (SLU),Swedish University of Agricultural Sciences (SLU),SLU Swedish University of Agricultural Science, Sweden
Manufacturing pasta is a rather well known process, but it is still challenging to tailor pasta products with new raw materials. In this study, we evaluated the effects of raw materials on the microstructure and water distribution in cooked pasta using H-1 magnetic resonance imaging (MRI) as well as bright field and polarized light microscopy. The MRI parameters initial intensity (I-0) and transverse dephasing time (T-2*) serve as indicators of the local water concentration and water-macromolecule interactions through chemical exchange, respectively. These parameters were mapped throughout the whole pasta volume with a spatial resolution of 78 mu m in all three dimensions. MRI was combined with light microscopy to link I-0 and T-2* to microstructure components such as fiber particles and the extent of starch gelatinization. Four commercial spaghetti samples were analyzed which were made of durum wheat flour, both plain and enriched with wheat fiber, as well as with wholegrain and soft wheat flour. Although all pasta samples showed similar macroscopic water absorption as measured by weight increase, the sample structures differed at the microscopic scale. Compared to durum wheat spaghetti, the presence of fiber particles decreased T-2*, while spaghetti enriched with soft wheat flour increased T-2*. In addition, light microscopy showed that large fiber particles partly acted as barriers against water migration and protected starch granules from swelling. Smaller wheat fiber particles did not affect local starch swelling. Thus, the combination of light microscopy and MRI is a powerful tool to study the microstructure and water distribution in pasta.
Ämnesord
TEKNIK OCH TEKNOLOGIER -- Industriell bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY -- Industrial Biotechnology (hsv//eng)
NATURVETENSKAP -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES -- Chemical Sciences -- Physical Chemistry (hsv//eng)
TEKNIK OCH TEKNOLOGIER -- Industriell bioteknik -- Livsmedelsbioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY -- Industrial Biotechnology -- Food Biotechnology (hsv//eng)
LANTBRUKSVETENSKAPER -- Jordbruk, skogsbruk och fiske -- Livsmedelsvetenskap (hsv//swe)