Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
Ferri, Julien, 1990 (författare)
Subatomär fysik och plasmafysik,Institutionen för fysik,Chalmers tekniska högskola,Subatomic and Plasma Physics,Department of Physics,Chalmers University of Technology,Chalmers Tekniska Högskola
The French Alternative Energies and Atomic Energy Commission (CEA),CEA Dam Ile-de France (DIF),
Siminos, Evangelos, 1979 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU),University of Gothenburg
Dubois, Timothy, 1982 (författare)
Subatomär fysik och plasmafysik,Institutionen för fysik,Chalmers tekniska högskola,Subatomic and Plasma Physics,Department of Physics,Chalmers University of Technology,Chalmers Tekniska Högskola
Yi, Longqing, 1988 (författare)
Subatomär fysik och plasmafysik,Institutionen för fysik,Chalmers tekniska högskola,Subatomic and Plasma Physics,Department of Physics,Chalmers University of Technology,Chalmers Tekniska Högskola
Luís Martins, Joana, 1984 (författare)
Subatomär fysik och plasmafysik,Institutionen för fysik,Chalmers tekniska högskola,Subatomic and Plasma Physics,Department of Physics,Chalmers University of Technology,Chalmers Tekniska Högskola
Fülöp, Tünde, 1970 (författare)
Subatomär fysik och plasmafysik,Institutionen för fysik,Chalmers tekniska högskola,Subatomic and Plasma Physics,Department of Physics,Chalmers University of Technology,Chalmers Tekniska Högskola
We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ∼0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.