Sökning: onr:"swepub:oai:research.chalmers.se:2392d9d5-3ccd-4dbe-9980-0c88da83d8a8" >
Strong Gravitationa...
Strong Gravitational Lensing Parameter Estimation with Vision Transformer
-
- Huang, Kuan Wei (författare)
- Carnegie Mellon University (CMU)
-
- Chen, Geoff Chih Fan (författare)
- University of California
-
- Chang, Po Wen (författare)
- Ohio State University
-
visa fler...
-
- Lin, Sheng Chieh (författare)
- University of Kentucky
-
- Hsu, Chia-Jung, 1991 (författare)
- Chalmers tekniska högskola,Chalmers University of Technology
-
Thengane, Vishal (författare)
-
- Lin, Joshua Yao Yu (författare)
- University of Illinois
-
visa färre...
-
(creator_code:org_t)
- 2023-02-15
- 2023
- Engelska.
-
Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer Nature Switzerland. - 1611-3349 .- 0302-9743. ; 13801 LNCS, s. 143-153
- Relaterad länk:
-
https://doi.org/10.1...
-
visa fler...
-
https://research.cha...
-
visa färre...
Abstract
Ämnesord
Stäng
- Quantifying the parameters and corresponding uncertainties of hundreds of strongly lensed quasar systems holds the key to resolving one of the most important scientific questions: the Hubble constant (H0 ) tension. The commonly used Markov chain Monte Carlo (MCMC) method has been too time-consuming to achieve this goal, yet recent work has shown that convolution neural networks (CNNs) can be an alternative with seven orders of magnitude improvement in speed. With 31,200 simulated strongly lensed quasar images, we explore the usage of Vision Transformer (ViT) for simulated strong gravitational lensing for the first time. We show that ViT could reach competitive results compared with CNNs, and is specifically good at some lensing parameters, including the most important mass-related parameters such as the center of lens θ1 and θ2, the ellipticities e1 and e2, and the radial power-law slope γ′. With this promising preliminary result, we believe the ViT (or attention-based) network architecture can be an important tool for strong lensing science for the next generation of surveys. The open source of our code and data is in https://github.com/kuanweih/strong_lensing_vit_resnet.
Ämnesord
- NATURVETENSKAP -- Data- och informationsvetenskap -- Datorteknik (hsv//swe)
- NATURAL SCIENCES -- Computer and Information Sciences -- Computer Engineering (hsv//eng)
- NATURVETENSKAP -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
- NATURAL SCIENCES -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
- TEKNIK OCH TEKNOLOGIER -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
- ENGINEERING AND TECHNOLOGY -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
Publikations- och innehållstyp
- kon (ämneskategori)
- ref (ämneskategori)
Hitta via bibliotek
Till lärosätets databas