SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:research.chalmers.se:2392d9d5-3ccd-4dbe-9980-0c88da83d8a8"
 

Sökning: onr:"swepub:oai:research.chalmers.se:2392d9d5-3ccd-4dbe-9980-0c88da83d8a8" > Strong Gravitationa...

Strong Gravitational Lensing Parameter Estimation with Vision Transformer

Huang, Kuan Wei (författare)
Carnegie Mellon University (CMU)
Chen, Geoff Chih Fan (författare)
University of California
Chang, Po Wen (författare)
Ohio State University
visa fler...
Lin, Sheng Chieh (författare)
University of Kentucky
Hsu, Chia-Jung, 1991 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Thengane, Vishal (författare)
Lin, Joshua Yao Yu (författare)
University of Illinois
visa färre...
 (creator_code:org_t)
2023-02-15
2023
Engelska.
Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer Nature Switzerland. - 1611-3349 .- 0302-9743. ; 13801 LNCS, s. 143-153
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • Quantifying the parameters and corresponding uncertainties of hundreds of strongly lensed quasar systems holds the key to resolving one of the most important scientific questions: the Hubble constant (H0 ) tension. The commonly used Markov chain Monte Carlo (MCMC) method has been too time-consuming to achieve this goal, yet recent work has shown that convolution neural networks (CNNs) can be an alternative with seven orders of magnitude improvement in speed. With 31,200 simulated strongly lensed quasar images, we explore the usage of Vision Transformer (ViT) for simulated strong gravitational lensing for the first time. We show that ViT could reach competitive results compared with CNNs, and is specifically good at some lensing parameters, including the most important mass-related parameters such as the center of lens θ1 and θ2, the ellipticities e1 and e2, and the radial power-law slope γ′. With this promising preliminary result, we believe the ViT (or attention-based) network architecture can be an important tool for strong lensing science for the next generation of surveys. The open source of our code and data is in https://github.com/kuanweih/strong_lensing_vit_resnet.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Engineering (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Publikations- och innehållstyp

kon (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy