SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Kemiteknik) AMNE:(Korrosionsteknik) "

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Kemiteknik) AMNE:(Korrosionsteknik)

  • Resultat 1-10 av 477
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kharazmi, Parastou, 1977- (författare)
  • Monitoring the gelation time and curing process of a reinforced polyester lining-original data
  • 2019
  • Annan publikationabstract
    • Polymer linings used in sewer rehabilitation technologies are expected to cure fast in order for the renewed line to return to the service quickly and with minimum disruption.  This dataset includes the original data obtained from the thermal analyses of a reinforced polyester composite used as pipe lining, including studying gelation, enthalpy and curing process for a better understanding of the material's curing behaviour after application in the field. 
  •  
2.
  • Goebel, Claudia, 1988 (författare)
  • Corrosion of Ferritic Stainless Steels Used in Solid Oxide Fuel Cells
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solid oxide fuel cells (SOFC) are energy conversion systems with clean emissions (depending on the fuel used) and high electrical efficiencies, which could potentially replace conventional conversion systems such as combustion engines. However, other issues, such as high costs and limited lifetime, must be resolved before widespread commercialization of SOFCs can be achieved. One of the major cost factors and the component that reduces the lifetime of SOFCs immensely, is the interconnect, which electrically connects multiple fuel cells to form a stack. Interconnects are typically made of ferritic stainless steels, and, due to high temperatures (600 °C – 900 °C) and the aggressive environments prevalent in fuel cells, the interconnects corrode over time. The protective Cr2O3 that forms on ferritic stainless steels at high temperatures mitigates the corrosion process to a certain extent. However, this oxide layer leads to two other issues: (i) vaporization of hexavalent Cr species, which leads to cathode poisoning and (ii) an increase in the electrical resistance of the interconnect caused by a continuously growing oxide layer. Both these problems can be reduced to a certain extent with coatings. Especially spinel coatings have been proven highly effective at decreasing Cr-evaporation. The first part of this work examines the influence of the Co3O4 spinel coating on area specific resistance (ASR). It was found that the Co3O4 thickness of Crofer 22 APU, which was exposed in air for 500 h at 600 °C, did not significantly impact the ASR, and, instead, the main contributor to overall resistance was the thermally grown Cr2O3. The second part of this work focuses on the long-term stability of Ce/Co-coated (10 nm Ce/640 nm Co) AISI 441. Coated AISI 441 was exposed by AB Sandvik Materials Technology for up to 37 000 hours at 800 °C in laboratory air. Subsequent analysis showed very low Cr-evaporation rates compared to uncoated AISI 441, and ASR values below 40 mΩcm2, suggesting that, under these conditions, the coating is effective in reducing Cr-evaporation rates and Cr2O3-growth rates even after long exposure times. The last part of the work analyzes the influence of pre-oxidation on the dual atmosphere effect at 600 °C with regard to two parameters: the pre-oxidation time and the pre-oxidation location. It was demonstrated that longer pre-oxidation times for AISI 441 result in extended resistance against dual atmosphere corrosion on the air-facing side. It was also found that the pre-oxidation layer on the hydrogen-facing side is more important for corrosion resistance in dual atmosphere than the pre-oxidation layer on the air-facing side.
  •  
3.
  • Grolig, Jan Gustav, 1986 (författare)
  • Coated Ferritic Stainless Steels as Interconnects in Solid Oxide Fuel Cells - Material Development and Electrical Properties
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solid oxide fuel cells (SOFCs) are attracting increasing interest as devices with potentialuses in decentralized and clean electricity and heat production. Several challengeswith respect to materials have to be overcome to achieve efficiencies and life-spansthat are sufficient for long-term applications.An important element of an SOFC stack is the interconnect component, which connectstwo adjacent fuel cell elements. Interconnects, which are commonly composedof ferritic stainless steels, have to be corrosion-resistant, mechanically stable and costoptimized.This work aimed to investigate economic solutions for interconnect materials and tounderstand the underlying mechanisms of degradation and electrical conduction ofthese materials. Mainly two substrates, a commercially available steel (AISI 441) anda ferritic stainless steel that was optimized for an SOFC application (Sandvik SanergyHT) were combined with different barrier coatings and exposed to a cathode-sideatmosphere. A method was developed that allows for the electrical characterizationof promising material systems and model alloys, thereby facilitating a fundamentalunderstanding of the dominant electrical conduction processes linked to the oxidescales that grow on interconnects. The AISI 441 steel coated with reactive elementsand cobalt showed good corrosion and chromium evaporation profiles, while AISI 441coated with cerium and cobalt also had promising electrical properties. The SanergyHT steel was examined with coatings of copper and iron and copper and manganese,respectively. The corrosion and chromium evaporation profiles of Sanergy HT wereimproved by coating with copper and iron. The copper and iron-coated Sanergy HTshowed lower area specific resistance values than cobalt-coated Sanergy HT. Chromia,which is the main constituent of oxide scales, was synthesized using differentmethods. The electrical properties of chromia were found to be sensitive to not onlyimpurities, but also heat treatment. Finally the electrical properties of cobalt- andcobalt cerium-coated Sanergy HT steels were investigated. It was revealed that theaddition of cerium improved the conductivity of the interconnect by both slowingdown chromia growth and preventing the outward diffusion of iron into the spinel.
  •  
4.
  • Bauhn, Lovisa, 1981, et al. (författare)
  • The fate of hydroxyl radicals produced during H2O2 decomposition on a SIMFUEL surface in the presence of dissolved hydrogen
  • 2018
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 507, s. 38-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Over geologic timescales hydrogen peroxide will be one of the most important radiolytic oxidants challenging the spent fuel integrity in a deep repository. Consequently, the reaction between hydrogen peroxide and different kinds of UO 2 based materials has been the subject of several studies over recent decades. Parts of these studies have investigated the effect of dissolved hydrogen on this reaction, as large amounts of hydrogen are expected to be produced by anoxic corrosion of iron in the deep repositories. In some of the studies hydrogen has been shown to offset the radiolysis-driven oxidative dissolution of the fuel despite the expected inertia of hydrogen at repository temperatures. However, the underlying mechanism is primarily based on the effect of the metallic particles contained in the spent fuel. One clue to the mechanistic understanding is whether or not a reaction takes place between dissolved hydrogen and hydroxyl radicals adsorbed to a fuel surface resulting from the decomposition of H 2 O 2 . In the study presented here this reaction could be confirmed in an autoclave system with SIMFUEL, a hydrogen peroxide spiked solution, and deuterium gas. The results show that the studied reaction does not only occur, but accounts for a substantial part of the hydrogen peroxide consumption in the system. Only a very minor part, 0.02%, of the total consumed hydrogen peroxide caused oxidative dissolution of the SIMFUEL. The conclusion is supported by quantitative measurements of HDO, dissolved U in solution and O 2 in the gas phase.
  •  
5.
  • Li, Yuchen, et al. (författare)
  • Fabricating an anti-corrosion carbonate coating on Mg-Li alloy by low-temperature plasma
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 439
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the huge demand for ultra-light magnesium-lithium (Mg-Li) alloys, practical applications of Mg-Li alloys are still severely restricted due to their poor corrosion resistance. Here, we report a new method utilizing low-temperature plasma to grow an oxide layer on the Mg-Li alloys in atmospheric condition, which reacts with CO2 and water in the air and consequently transform into a protective coating. The prepared coating has a layered structure consisting of a Mg(OH)(2) inner layer and a Li2CO3 outer layer. The composition distribution can be attributed to the different migration rates between Li+ and Mg2+ during coating formation. The Li2CO3 outer layer is sufficiently compact and very stable, with an ultra-low solubility in water, explaining the superior corrosion resistance of the coating in 3.5% NaCl solution. This simple and eco-friendly surface treatment provides a novel way of fabricating protective coatings on Mg-Li alloys.
  •  
6.
  • Kharazmi, Parastou, 1977- (författare)
  • Durability study of reinforced polyester composite used as pipe lining under artificial aging conditions
  • Tidskriftsartikel (refereegranskat)abstract
    • The aging of sewer infrastructure is an ongoing problem. As a result, different materials and methods are being used in alternative sewer rehabilitation approaches. This work was conducted to study one pipe lining, namely the reinforced polyester composite, under artificial aging; this was done to provide a better understanding of the material’s performance under operating conditions, where it is regularly exposed to degrading factors such as heat and water. Aging of the material was monitored by means of several tests, including thermal and mechanical analyses, water absorption and microscopy. The results showed that the combination of aging in water and at high temperatures resulted in greater effects on the material compared to aging at high temperatures in dry conditions. Although the measured properties were affected significantly when immersed in water at high temperatures, the material showed acceptable properties at lower exposure temperatures close to the expected temperature inside sewer systems.
  •  
7.
  • Kharazmi, Parastou, 1977- (författare)
  • Evaluation of Innovative Rehabilitation Technologies Utilising Polymer Composites for Aging Sewer Systems
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Water and wastewater sewer system maintenance is among the costliest aspects of infrastructure investment. The replacement of deteriorated lines is a difficult and expensive process that causes community disturbance and is generally not conducted fast enough to meet demand. To keep up with the rate of deterioration, the use of alternative rehabilitation technologies using polymer linings has increased significantly in recent years, both within Sweden and worldwide. Compared to the traditional pipe replacement method, these technologies are cost-effective, create less community disturbance, and offer a quick return to the service for the line. The main function of polymeric lining is to stabilise the condition of the pipeline, eliminate deterioration, and thereby extend the pipeline’s service life. Although rehabilitation technologies employing polymeric systems have been in use for over 30 years, there have been few technical assessments of either these technologies or the materials involved. Data gathered through the evaluation of these innovative technologies can make their benefits and limitations more widely understood, and can also be used to increase the effectiveness of the rehabilitation process in future.The main objective of this work was to contribute to an improved understanding of the most commonly used materials and methods employed in rehabilitation of wastewater and other applicable sewer lines in residential buildings in Sweden. The primary objective was not to prove that the emerging rehabilitation technologies work, but rather to increase knowledge of their weaknesses and strengths, identify any issues, and provide a technical assessment to support realistic expectations of pipeline rehabilitation. Gathering technical information in this way will help with the planning of future investigations; moreover, collecting extensive data will help to increase the effectiveness of the renewal works, aid progress in the field, and improve predictions regarding longevity and service life. As pipeline rehabilitation is still considered novel, and owing to the general lack of available data on the subject, a multi-approach study was carried out: this included evaluation of the polymeric materials’ performance in the presence of deteriorative factors, assessing the in-service state of the materials and lined sewers previously installed, monitoring the level of quality control implemented during previous rehabilitation works, and evaluating the environmental impacts of using pipe-lining technologies compared to pipe replacement. The techniques discussed included rehabilitation with epoxy and polyester resin-based lining materials, applied with brush-on and spray-on techniques, and cured-in-place pipe lining (installed by sending a resin-impregnated flexible tube inside the host pipe). Degradation of the resin-based lining materials was investigated via artificial aging involving immersion in water at elevated temperatures. The changes in materials that occurred during accelerated laboratory aging were tracked by means of various tests, including thermal and mechanical analyses, water absorption measurements and microscopy. The analysis focused on reinforced polyester-based and toughened epoxy-based lining materials in order to gain a better understanding of their performance as pipe lining. Moreover, the previously installed lined pipes and lining materials were also studied during laboratory examinations to evaluate the in-service performance of the materials and techniques under operating conditions over time, as well as to identify common defects. The state of the materials and the lined pipe were studied by means of different investigative methods, including visual inspection, microscopy, Fourier transform infrared spectroscopy, thickness measurement, thermal and mechanical analyses. This PhD work also includes an investigation to determine the level of quality control carried during some previous rehabilitation works. Data on the quality evaluation of previous rehabilitation works were gathered during visits to the work sites, as well as by analysing lined pipes that had already been installed. Finally, a comparative life-cycle assessment was undertaken to compare the environmental impacts of pipe replacement with those of alternative innovative rehabilitations, such as CIPP and coatings with polyester and epoxy polymeric systems. Data obtained from an LCA tool were used to facilitate comparison from an environmental perspective.Results from artificial aging in the lab indicated that the properties of polymeric lining materials changed significantly when high temperatures were combined with water exposure. However, the aging testing conducted for this study also found that the materials performed relatively well at temperatures close to the average temperatures inside sewerage systems. The results revealed that the polyester-based lining material was less sensitive when compared with epoxy-based lining materials during stimulated aging. Moreover, results from the in-service field demonstration (involving examination of 12 samples with up to 10 years of service, including reinforced polyester and modified epoxy linings or cured-in-place pipe (CIPP) lining) showed minimal evidence that the materials underwent significant deterioration after installation; instead, a majority of the common defects were found to be related to poor-quality installation practices. Because very few field samples were available to study, conclusions regarding overall performance could not be drawn. However, there is no evidence that these materials will not perform as expected during their service life when properly installed.Evaluating quality control of previous rehabilitation work revealed a gap between theory and practice where the level of quality control and documentation was concerned; furthermore, it also emerged that quality control and documentation is crucial to both the prevention of common issues and the overall effectiveness of the rehabilitation. Accordingly, a series of recommendations regarding the development of comprehensive quality control and quality assurance procedures (QC/QA) are provided in this work. These recommendations highlight the aspects that are most important to consider at each of several key stages (before installation, during installation, and after rehabilitation work is completed).Results from comparative life-cycle assessment (LCA) showed that alternative technologies, including cured-in-place (flexible sleeve) and coating techniques, have some advantages over pipe replacement from an environmental perspective. However, the choice to use one rehabilitation technology over another is a multi-stage decision-making process that should not be based solely on a single factor.This PhD work promotes an improved understanding of the limitations and benefits of polymeric lining through the testing performed and analyses conducted. This work highlights the need for improved quality control, and further suggests that developing a detailed and comprehensive quality control plan for each technology would provide higher and more consistent quality overall. The study also demonstrates that the long-term strength of any rehabilitation work depends on various factors, and that selecting one method over another must be a process based on extensive knowledge and understanding of each rehabilitation technology. No evidence was found to indicate that the materials could not perform well under working conditions if selected and installed appropriately. However, a larger number of field samples with longer in-service time and a more detailed technical history, along with a more extended experimental plan for laboratory investigations based on the results of this PhD work, will allow for the gathering of the data required to answer questions regarding life expectancy with a higher degree of certainty.
  •  
8.
  •  
9.
  • Alnegren, Patrik, 1988 (författare)
  • Corrosion of Ferritic Stainless Steel Interconnects for Solid Oxide Cells – Challenging Operating Conditions
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solid oxide cells (SOC) have the potential to revolutionize electricity production by being able to both produce electricity with very high efficiency from a variety of fuels or to produce fuels from electricity and abundant raw materials such as water or carbon dioxide. Some material challenges remain to be solved before large-scale commercialization can be achieved. Interconnects made from ferritic stainless steels are key components in solid oxide cells, but the conditions within the cells cause them to degrade from high temperature corrosion. This thesis seeks out the potentially demanding operating conditions for solid oxide cells and focuses on investigating the effect of changing the environment on the degradation of ferritic stainless steels. Tests in which steel coupons were exposed to different atmospheres were performed to simulate the degradation of an interconnect inside an operating solid oxide cell. The effect of operating solid oxide fuel cells in electrolysis mode was specifically investigated, which means that interconnects were exposed to pure oxygen instead of ambient air and higher steam content on the fuel side. It was found that at 850 °C, ferritic stainless steels with 18-26% chromium content did not oxidize faster when the oxygen pressure was increased. However, the microstructure of the formed oxide scales on the steels was found to depend on oxygen concentration which caused oxide spallation for some steels at lower oxygen pressures. Experiments in hydrogen with high steam content, representing the other side of the interconnect, revealed an increase in the oxidation rate of the steel if the chromium content in the steel was too low, due to a change of the oxidation mechanism. Dilution of the same atmosphere with argon changed the oxidation mechanism to more protective behavior, which led to new insights in designing relevant simulated solid oxide cell fuel side conditions. It was also found that the oxidation rate of ferritic stainless steels in fuel side atmosphere can be significantly reduced by the physical vapor deposition (PVD) of cerium onto the surface. Even with applied cerium, however, steels with lower chromium content might still be at risk of rapid oxidation due to iron-rich oxide formation. A close-to-reality atmosphere was also simulated by exposing a ferritic steel simultaneously to air on one side and hydrogen on the other, which resulted in severely accelerated corrosion at 600 °C. Areas of up to 30 µm thick iron oxide were formed on the air side after 1000 h and grew to cover most of the surface after 3000 h. This dual atmosphere effect was concluded to have an inverse relation to temperature since accelerated corrosion was not observed at 700 and 800 °C. In addition, it was found that the corrosion resistance could be improved if the steel was pre-oxidized in air before exposure to dual atmosphere.
  •  
10.
  • Wu, Haizhou, 1987, et al. (författare)
  • Effects of sodium chloride and sodium tripolyphosphate on the prooxidant properties of hemoglobin in washed turkey muscle system
  • 2022
  • Ingår i: Food Chemistry: X. - : Elsevier BV. - 2590-1575. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effects of sodium chloride (NaCl) and sodium tripolyphosphate (STPP) on lipid oxidation induced by oxyhemoglobin (oxyHb) in washed turkey muscle (WTM) model. To explore the reasons for observed effects, the pro-oxidant abilities of Hb derivatives (e.g., metHb, oxyHb, hemin, Fe2+, and Fe3+), pH change, and antioxidation of Hb in the presence of NaCl or STPP were also analyzed. The observed lipid oxidation capacity in WTM followed the order metHb > hemin > oxyHb > Fe2+ > Fe3+. Added Fe2+ accelerated auto-oxidation of oxyHb and oxyHb-mediated lipid oxidation. Hb auto-oxidation to metHb increased as the pH decreased from 6.6 to 5.0. NaCl promoted oxyHb-mediated lipid oxidation due to NaCl causing decreased pH value and increased formation of metHb. STPP inhibited oxyHb-mediated lipid oxidation and weakened the pro -oxidative effect of NaCl. This could be attributed to STPP increasing the pH, inactivating free iron, and inhibiting formation of metHb.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 477
Typ av publikation
tidskriftsartikel (326)
konferensbidrag (50)
doktorsavhandling (39)
licentiatavhandling (32)
annan publikation (10)
forskningsöversikt (8)
visa fler...
bokkapitel (8)
rapport (4)
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (375)
övrigt vetenskapligt/konstnärligt (97)
populärvet., debatt m.m. (2)
Författare/redaktör
Svensson, Jan-Erik, ... (37)
Jonsson, Torbjörn, 1 ... (26)
Pan, Jinshan, 1962- (24)
Johansson, Lars-Gunn ... (21)
Pan, Jinshan (21)
Thuvander, Mattias, ... (19)
visa fler...
Claesson, Per M. (18)
Froitzheim, Jan, 198 ... (17)
Liske, Jesper, 1978 (17)
Eklund, Johan, 1991 (17)
Odnevall Wallinder, ... (16)
Guo, Sheng, 1981 (15)
Geers, Christine, 19 ... (15)
Leygraf, Christofer (14)
Andrén, Hans-Olof, 1 ... (14)
Leygraf, Christopher ... (14)
Panas, Itai, 1959 (13)
Halvarsson, Mats, 19 ... (13)
Odnevall Wallinder, ... (12)
Henderson, Pamela (12)
Örnek, Cem (12)
Esmaily, Mohsen, 198 ... (12)
Phother Simon, Julie ... (11)
Cao, Yu, 1969 (11)
Szakalos, Peter (10)
Zhang, Fan (10)
Sattari, Mohammad, 1 ... (10)
Persdotter, Amanda, ... (10)
Thierry, Dominique (9)
Johnson, C. Magnus (9)
Zanella, Caterina (9)
Nyborg, Lars, 1958 (9)
Sundell, Gustav, 198 ... (9)
Deflorian, Flavio (9)
Lundgren, Karin, 196 ... (8)
Hedberg, Yolanda, Do ... (8)
Pettersson, Rachel (8)
Lundgren, Edvin (7)
Oudbashi, Omid, 1978 (7)
Chang, Tingru (7)
Chyrkin, Anton, 1984 (7)
Lindgren, Mikaela, 1 ... (7)
Alipour, Yousef, 197 ... (6)
Bettini, Eleonora (6)
Hultquist, Gunnar (6)
Olivas Ogaz, Mercede ... (6)
Fedel, Michele (6)
Kharazmi, Parastou, ... (6)
Mohamedin, Esraa Ham ... (6)
Sand, Tommy, 1982 (6)
visa färre...
Lärosäte
Chalmers tekniska högskola (226)
Kungliga Tekniska Högskolan (174)
RISE (62)
Linköpings universitet (21)
Uppsala universitet (18)
Lunds universitet (16)
visa fler...
Göteborgs universitet (10)
Jönköping University (10)
Umeå universitet (7)
Luleå tekniska universitet (7)
Högskolan Väst (6)
Högskolan Dalarna (6)
Karolinska Institutet (5)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
Linnéuniversitetet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (475)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Teknik (477)
Naturvetenskap (136)
Humaniora (7)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy