SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0001 4842 OR L773:1520 4898 "

Sökning: L773:0001 4842 OR L773:1520 4898

  • Resultat 1-10 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfredsson, Viveka, et al. (författare)
  • The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material.
  • 2015
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 1520-4898 .- 0001-4842. ; 48:7, s. 1891-1900
  • Forskningsöversikt (refereegranskat)abstract
    • During the last two decades, the synthesis of silica with an ordered mesoporous structure has been thoroughly explored. The basis of the synthesis is to let silica monomers polymerize in the presence of an amphiphilic template component. In the first studies, cationic surfactants were used as structure inducer. Later it was shown that pluronic copolymers also could have the role. One advantage with the pluronics copolymers is that they allow for a wider variation in the radius of pores in the resulting silica material. Another advantage lies in the higher stability resulting from the thicker walls between the pores. Mesoporous silica has a very high area to volume ratio, and the ordered structure ensures surface homogeneity. There are a number of applications of this type of material. It can be used as support for catalysts, as templates to produces other mesoporous inorganic materials, or in controlled release applications. The synthesis of mesoporous silica is, from a practical point of view, simple, but there are significant possibilities to vary synthesis conditions with a concomitant effect on the properties of the resulting material. It is clear that the structural properties on the nanometer scale are determined by the self-assembly properties of the amphiphile, and this knowledge has been used to optimize pore geometry and pore size. To have a practical functional material it is desirable to also control the structure on a micrometer scale and larger. In practice, one has largely taken an empirical approach in optimizing reaction conditions, paying less attention to underlying chemical and physicochemical mechanisms that lead from starting conditions to the final product. In this Account, we present our systematic studies of the processes involved not only in the formation of the mesoporous structure as such, but also of the formation of structures on the micrometer scale. The main point is to show how the ongoing silica polymerization triggers a sequence of structural changes through the action of colloidal interactions. Our approach is to use a multitude of experimental methods to characterize the time evolution of the same highly reproducible synthesis process. It is the silica polymerization reactions that set the time scale, and the block copolymer self-assembly responds to the progress of the polymerization through a basically hydrophobic interaction between silica and ethylene oxide units. The progression of the silica polymerization leads to an increased hydrophobicity triggering an aggregation process resulting in the formation of silica-copolymer composite particles of increasing size. The particle growth occurs in a stepwise way caused by intricate shifts between colloidal stability and instability. By tuning reaction conditions one can have an end product of hexagonal prism composite particles with single crystal 2D hexagonal order.
  •  
2.
  •  
3.
  • Artero, Vincent, et al. (författare)
  • From Enzyme Maturation to Synthetic Chemistry : The Case of Hydrogenases
  • 2015
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 48:8, s. 2380-2387
  • Forskningsöversikt (refereegranskat)abstract
    • CONSPECTUS: Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme-{Mn-I(CO)(3)} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H-2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and prepare a hybrid system, displaying remarkable structural similarities to an [FeFe]-hydrogenase, and we show here for the first time that it is catalytically active for proton reduction. This system is based on the combination of HydF, a protein involved in the maturation of [FeFe]-hydrogenase (HydA), and a close mimic of the active site of this class of enzymes. Moreover, the synthetic [Fe-2(adt)(CO)(4)(CN)(2)](2-) (adt(2-) = aza-propanedithiol) mimic, alone or within a HydF hybrid system, was shown to be able to maturate and activate a form of HydA itself lacking its diiron active site. We discuss the exciting perspectives this "synthetic maturation" opens regarding the "invention" of novel hydrogenases by the chemists.
  •  
4.
  • Belda, Oscar, et al. (författare)
  • Molybdenum-catalyzed asymmetric allylic alkylations
  • 2004
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 37:3, s. 159-167
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly regio- and enantioselective molybdenum-catalyzed allylic alkylation reaction has become a powerful synthetic tool during the past few years. This Account describes the achievements gained so far in the area, with special attention directed to the different chiral ligands that have been used for inducing chirality in the products, the range of allylic substrates and nucleophiles employed, mechanistic studies, and applications of the reaction in asymmetric syntheses.
  •  
5.
  • Bergström, Lennart, et al. (författare)
  • Mesocrystals in Biominerals and Colloidal Arrays
  • 2015
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 48:5, s. 1391-1402
  • Forskningsöversikt (refereegranskat)abstract
    • Mesocrystals, which originally was a term to designate superstructures of nanocrystals with a common crystallographic orientation, have now evolved to a materials concept. The discovery that many biominerals are mesocrystals generated a large research interest, and it was suggested that mesocrystals result in better mechanical performance and optical properties compared to single crystalline structures. Mesocrystalline biominerals are mainly found in spines or shells, which have to be mechanically optimized for protection or as a load-bearing skeleton. Important examples include red coral and sea urchin spine as well as bones. Mesocrystals can also be formed from purely synthetic components. Biomimetic mineralization and assembly have been used to produce mesocrystals, sometimes with complex hierarchical structures. Important examples include the fluorapatite mesocrystals with gelatin as the structural matrix, and mesocrystalline calcite spicules with impressive strength and flexibility that could be synthesized using silicatein protein fibers as template for calcium carbonate deposition. Self-assembly of nanocrystals can also result in mesocrystals if the nanocrystals have a well-defined size and shape and the assembly conditions are tuned to allow the nanoparticles to align crystallographically. Mesocrystals formed by assembly of monodisperse metallic, semiconducting, and magnetic nanocrystals are a type of colloidal crystal with a well-defined structure on both the atomic and mesoscopic length scale. Mesocrystals typically are hybrid materials between crystalline nanoparticles and interspacing amorphous organic or inorganic layers. This structure allows to combine disparate materials like hard but brittle nanocrystals with a soft and ductile amorphous material, enabling a mechanically optimized structural design as realized in the sea urchin spicule. Furthermore, rnesocrystals can combine the properties of individual nanocrystals like the optical quantum size effect, surface plasmon resonance, and size dependent magnetic properties with a mesostructure and morphology tailored for specific applications. Indeed, mesocrystals composed of crystallographically aligned polyhedral or rodlike nanocrystals with anisotropic properties can be materials with strongly directional properties and novel collective emergent properties. An additional advantage of mesocrystals is that they can combine the properties of nanoparticles with a structure on the micro- or macroscale allowing for much easier handling. In this Account, we propose that mesocrystals are defined as a nanostructured material with a defined long-range order on the atomic scale, which can be inferred from the existence of an essentially sharp wide-angle diffraction pattern (with sharp Bragg peaks) together with clear evidence that the material consists of individual nanoparticle building units. We will give several examples of mesocrystals and discuss the structural characteristics for biominerals, biomimetic materials, and colloidal arrays of nanocrystals. The potential of the mesocrystal materials concept in other areas will be discussed and future developments envisioned.
  •  
6.
  • Björneholm, Olle, et al. (författare)
  • Superficial Tale of Two Functional Groups : On the Surface Propensity of Aqueous Carboxylic Acids, Alkyl Amines, and Amino Acids
  • 2022
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 55:23, s. 3285-3293
  • Tidskriftsartikel (refereegranskat)abstract
    • ConspectusThe gas-liquid interface of water is environmentally relevant due to the abundance of aqueous aerosol particles in the atmosphere. Aqueous aerosols often contain a significant fraction of organics. As aerosol particles are small, surface effects are substantial but not yet well understood. One starting point for studying the surface of aerosols is to investigate the surface of aqueous solutions. We review here studies of the surface composition of aqueous solutions using liquid-jet photoelectron spectroscopy in combination with theoretical simulations. Our focus is on model systems containing two functional groups, the carboxylic group and the amine group, which are both common in atmospheric organics. For alkanoic carboxylic acids and alkyl amines, we find that the surface propensity of such amphiphiles can be considered to be a balance between the hydrophilic interactions of the functional group and the hydrophobic interactions of the alkyl chain. For the same chain length, the neutral alkyl amine has a lower surface propensity than the neutral alkanoic carboxylic acid, whereas the surface propensity of the corresponding alkyl ammonium ion is higher than that of the alkanoic carboxylate ion. This different propensity leads to a pH-dependent surface composition which differs from the bulk, with the neutral forms having a much higher surface propensity than the charged ones. In aerosols, alkanoic carboxylic acids and alkyl amines are often found together. For such mixed systems, we find that the oppositely charged molecular ions form ion pairs at the surface. This cooperative behavior leads to a more organic-rich and hydrophobic surface than would be expected in a wide, environmentally relevant pH range. Amino acids contain a carboxylic and an amine group, and amino acids of biological origin are found in aerosols. Depending on the side group, we observe surface propensity ranging from surface-depleted to enriched by a factor of 10. Cysteine contains one more titratable group, which makes it exhibit more complex behavior, with some protonation states found only at the surface and not in the bulk. Moreover, the presence of molecular ions at the surface is seen to affect the distribution of inorganic ions. As the charge of the molecular ions changes with protonation, the effects on the inorganic ions also exhibit a pH dependence. Our results show that for these systems the surface composition differs from the bulk and changes with pH and that the results obtained for single-component solutions may be modified by ion-ion interactions in the case of mixed solutions.
  •  
7.
  • Boschloo, Gerrit, et al. (författare)
  • Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells
  • 2009
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 42:11, s. 1819-1826
  • Forskningsöversikt (refereegranskat)abstract
    • Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions, The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO2 electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO2 electrode through the recombination kinetics between electrons in TiO2 and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I-/I-3(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I-/I-3(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO2 and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO2 catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2)(NCS)(2)) is 1.1 V. The driving force for reduction of oxidized dye is therefore as large as 0.75 V. This process leads to the largest internal potential loss in DSC devices. We expect that overall efficiencies above 15% might be achieved if half of this internal potential loss could be gained. The regeneration of oxidized dye with iodide leads to the formation of the diiodide radical (I-2(-center dot)). The redox potential of the I-2(-center dot)/I- couple must therefore be considered when determining the actual driving force for dye regeneration. The formed I-2(-center dot) disproportionates to I-3(-) and I-, which leads to a large loss in potential energy.
  •  
8.
  • Cahill, P. L., et al. (författare)
  • Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry
  • 2024
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society. - 0001-4842 .- 1520-4898. ; 57:3, s. 399-
  • Tidskriftsartikel (refereegranskat)abstract
    • Conspectus The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment. Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling “silver bullet” will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and “combination therapies” where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa. The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.
  •  
9.
  • Darmadi, Iwan, 1990, et al. (författare)
  • Bulk-Processed Plasmonic Plastic Nanocomposite Materials for Optical Hydrogen Detection
  • 2023
  • Ingår i: Accounts of Chemical Research. - 0001-4842 .- 1520-4898. ; 56:13, s. 1850-1861
  • Tidskriftsartikel (refereegranskat)abstract
    • Conspectus Sensors are ubiquitous, andtheir importanceis only going to increaseacross many areas of modern technology. In this respect, hydrogengas (H-2) sensors are no exception since they allow mitigationof the inherent safety risks associated with mixtures of H-2 and air. The deployment of H-2 technologies is rapidlyaccelerating in emerging energy, transport, and green steel-makingsectors, where not only safety but also process monitoring sensorsare in high demand. To meet this demand, cost-effective and scalableroutes for mass production of sensing materials are required. Here,the state-of-the-art often resorts to processes derived from the microelectronicsindustry where surface-based micro- and nanofabrication are the methodsof choice and where (H-2) sensor manufacturing is no exception. In this Account, we discuss how our recent efforts to develop sensorsbased on plasmonic plastics may complement the current state-of-the-art.We explore a new H-2 sensor paradigm, established througha series of recent publications, that combines (i) the plasmonic opticalH(2) detection principle and (ii) bulk-processed nanocompositematerials. In particular, plasmonic plastic nanocomposite sensingmaterials are described that comprise plasmonic H-2-sensitivecolloidally synthesized nanoparticles dispersed in a polymer matrixand enable the additive manufacturing of H-2 sensors ina cost-effective and scalable way. We first discuss the concept ofplasmonic plastic nanocomposite materials for the additive manufacturingof an active plasmonic sensing material on the basis of the threekey components that require individual and concerted optimization:(i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizermolecules on the nanoparticle surface from colloidal synthesis, and(iii) the polymer matrix. We then introduce the working principleof plasmonic H-2 detection, which relies on the selectiveabsorption of H species into hydride-forming metal nanoparticles that,in turn, induces distinct changes in their optical plasmonic signaturein proportion to the H-2 concentration in the local atmosphere.Subsequently, we assess the roles of the key components of a plasmonicplastic for H-2 sensing, where we have established that(i) alloying Pd with Au and Cu eliminates hysteresis and introducesintrinsic deactivation resistance at ambient conditions, (ii) surfactant/stabilizermolecules can significantly accelerate and decelerate H-2 sorption and thus sensor response, and (iii) polymer coatings acceleratesensor response, reduce the limit of detection (LoD), and enable molecularfiltering for sensor operation in chemically challenging environments.Based on these insights, we discuss the rational development and detailedcharacterization of bulk-processed plasmonic plastics based on glassyand fluorinated matrix polymers and on tailored flow-chemistry-basedsynthesis of Pd and PdAu alloy colloidal nanoparticles with optimizedstabilizer molecules. In their champion implementation, they enablehighly stable H-2 sensors with response times in the 2 srange and an LoD of few 10 ppm of H-2. To put plasmonicplastics in a wider perspective, we also report their implementationusing different polymer matrix materials that can be used for 3D printingand (an)isotropic Au nanoparticles that enable the manufacturing ofmacroscopic plasmonic objects with, if required, dichroic opticalproperties and in amounts that can be readily upscaled. We advertisethat melt processing of plasmonic plastic nanocomposites is a viableroute toward the realization of plasmonic objects and sensors, producedby scalable colloidal synthesis and additive manufacturing techniques.
  •  
10.
  • Das, Biswanath, et al. (författare)
  • The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation
  • 2021
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 54:17, s. 3326-3337
  • Forskningsöversikt (refereegranskat)abstract
    • Fossil fuel shortage and severe climate changes due to global warming have prompted extensive research on carbon-neutral and renewable energy resources. Hydrogen gas (H-2), a clean and high energy density fuel, has emerged as a potential solution for both fulfilling energy demands and diminishing the emission of greenhouse gases. Currently, water oxidation (WO) constitutes the bottleneck in the overall process of producing H-2 from water. As a result, the design of efficient catalysts for WO has become an intensively pursued area of research in recent years. Among all the molecular catalysts reported to date, ruthenium-based catalysts have attracted particular attention due to their robust nature and higher activity compared to catalysts based on other transition metals. Over the past two decades, we and others have studied a wide range of ruthenium complexes displaying impressive catalytic performance for WO in terms of turnover number (TON) and turnover frequency (TOF). However, to produce practically applicable electrochemical, photochemical, or photo-electrochemical WO reactors, further improvement of the catalysts' structure to decrease the overpotential and increase the WO rate is of utmost importance. WO reaction, that is, the production of molecular oxygen and protons from water, requires the formation of an O-O bond through the orchestration of multiple proton and electron transfers. Promotion of these processes using redox noninnocent ligand frameworks that can accept and transfer electrons has therefore attracted substantial attention. The strategic modifications of the ligand structure in ruthenium complexes to enable proton-coupled electron transfer (PCET) and atom proton transfer (APT; in the context of WO, it is the oxygen atom (metal oxo) transfer to the oxygen atom of a water molecule in concert with proton transfer to another water molecule) to facilitate the O-O bond formation have played a central role in these efforts. In particular, promising results have been obtained with ligand frameworks containing carboxylic acid groups that either are directly bonded to the metal center or reside in the close vicinity. The improvement of redox and chemical properties of the catalysts by introduction of carboxylate groups in the ligands has proven to be quite general as demonstrated for a range of mono- and dinudear ruthenium complexes featuring ligand scaffolds based on pyridine, imidazole, and pyridazine cores. In the first coordination sphere, the carboxylate groups are firmly coordinated to the metal center as negatively charged ligands, improving the stability of the complexes and preventing metal leaching during catalysis. Another important phenomenon is the reduction of the potentials required for the formation of higher valent intermediates, especially metal-oxo species, which take active part in the key O-O bond formation step. Furthermore, the free carboxylic acid/carboxylate units in the proximity to the active center have shown exciting proton donor/acceptor properties (through PCET or APT, chemically noninnocent) that can dramatically improve the rate as well as the overpotential of the WO reaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 61
Typ av publikation
forskningsöversikt (35)
tidskriftsartikel (25)
recension (1)
Typ av innehåll
refereegranskat (59)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Sundström, Villy (2)
Kärkäs, Markus D. (2)
Åkermark, Björn (2)
Hammarström, Leif (2)
Abelein, A (2)
Björneholm, Olle (2)
visa fler...
Öhrwall, Gunnar (2)
Svenson, Johan (2)
Ågren, Hans (2)
Johansson, Olof (1)
Lund, E. (1)
Grommet, Angela Beth ... (1)
Ma, Y. (1)
Andersson, Mats, 196 ... (1)
Inganäs, Olle (1)
Busch, Michael (1)
Zetterberg, Johan (1)
Lundgren, Edvin (1)
Pavia, Henrik, 1964 (1)
Lidin, Sven (1)
Nilsson, Mats (1)
Rahaman, Ahibur (1)
Shatskiy, Andrey (1)
Siegbahn, Per E. M. (1)
Johnston, Eric V. (1)
Mudring, Anja-Verena (1)
Langel, Ülo (1)
Nilsson, L. (1)
Roy, Souvik (1)
Johansson, J (1)
Gräslund, Astrid (1)
Hellio, C. (1)
Wang, Lei (1)
Bjorkhem, I (1)
Persson, Petter (1)
Styring, Stenbjörn (1)
Oliveberg, Mikael (1)
Lund, Mikael (1)
Lundström, Ingemar (1)
Müller, Christian, 1 ... (1)
Gustafson, Johan (1)
Merte, Lindsay R. (1)
Zhang, Chu (1)
Ewing, Andrew G, 195 ... (1)
Lomoth, Reiner (1)
Zhang, Fengling (1)
Bergström, Lennart (1)
Smetana, Volodymyr (1)
Zhou, Shengyang (1)
Strømme, Maria, 1970 ... (1)
visa färre...
Lärosäte
Stockholms universitet (16)
Lunds universitet (12)
Uppsala universitet (10)
Karolinska Institutet (9)
Kungliga Tekniska Högskolan (8)
Chalmers tekniska högskola (6)
visa fler...
Linköpings universitet (3)
RISE (3)
Göteborgs universitet (2)
Luleå tekniska universitet (2)
Umeå universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (61)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Teknik (6)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy