SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4800 "

Sökning: L773:0014 4800

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chen, X., et al. (författare)
  • Inhibition of Wnt/beta-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-beta 1 and FGF-2
  • 2016
  • Ingår i: Experimental and Molecular Pathology. - : Elsevier BV. - 0014-4800. ; 101:1, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary fibrosis is a progressive lung disorder of unknown etiology, which is characterized by alterations in alveolar epithelium function, fibroblast activation, and increased extracellular matrix deposition. Recent studies have demonstrated that PF is associated with uncontrolled production of cytokines after lung injury. In the present study, we found that transforming growth factor-beta 1 (TGF-beta 1) and fibroblast growth factor 2 (FGF-2) were both upregulated in bleomycin-induced fibrotic lung tissue and primary murine alveolar epithelial Type II (ATII) cells treated with bleomycin. Furthermore, we discovered that TGF-beta 1 could induce the differentiation of lung resident mesenchymal stem cells (LR-MSCs) into fibroblasts, which may play an essential role in PF. LR-MSCs incubated with FGF-2 showed modest alterations in the expression of alpha-SMA and Vimentin. Moreover, in our study, we found that Wnt/beta-catenin signaling was activated both in vitro and in vivo as a result of bleomycin treatment. Interestingly, we also found that suppression of the Wnt/beta-catenin signaling could significantly attenuate bleomycin-induced PF accompanied with decreased expression of TGF-beta 1 and FGF-2 in vitro and in vivo. These results support that controlling the aberrant expression of TGF-beta 1 and FGF-2 via inhibition of Wnt/beta-catenin signaling could serve as a potential therapeutic strategy for PF. (C) 2016 Elsevier Inc. All rights reserved.
  •  
3.
  • Cheng, Wei Kang, et al. (författare)
  • Nuclear and stromal expression of Manic fringe in renal cell carcinoma
  • 2021
  • Ingår i: Experimental and molecular pathology (Print). - : Elsevier. - 0014-4800 .- 1096-0945. ; 122
  • Tidskriftsartikel (refereegranskat)abstract
    • Renal cell carcinoma (RCC) is the most common type of kidney cancer and has the highest mortality rate among genitourinary cancers. Despite the advances in molecular targeted therapies to treat RCC, the inevitable emergence of resistance has delineated the need to uncover biomarkers to prospectively identify patient response to treatment and more accurately predict patient prognosis. Fringe is a fucose specific beta 1, 3N-acetylglucosaminyltransferase that modifies the Notch receptors. Given the link between its function and aberrant Notch activation in RCC, Fringe may be implicated in this disease. The Fringe homologs comprise of Lunatic fringe (LFng), Manic fringe (MFng) and Radical fringe (RFng). MFng has been reported to play a role in cancer. MFng is also essential in the development of B cells. However, the expression profile and clinical significance of MFng, and its association with B cells in RCC are unknown. CD20 is a clinically employed biomarker for B cells. This pilot study aimed to determine if MFng protein expression can be utilized as a prospective biomarker for therapeutics and prognosis in RCC, as well as to determine its association with CD20+ B cells. Analysis of publicly available MFng gene expression datasets on The Cancer Genome Atlas Netlwork (TCGA) identified MFng gene expression to be up-regulated in Kidney Clear Cell Renal Carcinoma (KIRC) patients. However there was no significant association between the patient survival probability and the level of MFng expression in this cohort. Immunohistochemistry performed on a tissue microarray containing cores from 64 patients revealed an elevated MFng protein expression in the epithelial and stromal tissues of RCC compared to the normal kidney, suggesting a possible role in tumorigenesis. Our study describes for the first time to our knowledge, the protein expression of MFng in the nuclear compartment of normal kidney and RCC, implicating a prospective involvement in gene transcription. At the cellular level, cytoplasmic MFng was also abundant in the normal kidney and RCC. However, MFng protein expression in the malignant epithelial and stromal tissue of RCC had no positive correlation with the patients' overall survival, progression-free survival and time to metastasis, as well as the gender, age, tumor stage and RCC subtype, indicating that MFng may not be an appropriate prognostic marker. The association between CD20+ B cells and epithelial MFng was found to approach borderline insignificance. Nonetheless, these preliminary findings may provide valuable information on the suitability of MFng as a potential therapeutic molecular marker for RCC, thus warrants further investigation using a larger cohort.
  •  
4.
  •  
5.
  •  
6.
  • Granqvist, Victoria, et al. (författare)
  • The combination of TRAIL and the Smac mimetic LCL-161 induces an irreversible phenotypic change of MCF-7 breast cancer cells
  • 2022
  • Ingår i: Experimental and Molecular Pathology. - : Elsevier BV. - 0014-4800. ; 125
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Breast cancer is the most common malignancy affecting women. Although the prognosis generally is good, a substantial number of patients still suffer from relapse, emphasizing the need for novel treatments. Smac mimetics were developed to facilitate cell death by blocking inhibitor of apoptosis proteins (IAPs). It has been suggested that TNF-related apoptosis inducing ligand (TRAIL) can be used together with Smac mimetics to induce cancer cell death. Methods: Cell viability was studied with Trypan blue staining and Annexin V assay, siRNA was used to downregulate specific proteins, protein levels were estimated with Western blot, and mRNA levels were analyzed with qPCR, microarray and RNA-seq. For global expression, groups were compared with principal component analysis and the limma package in R. Gene enrichment was analyzed with Fisher's test. For other experiments, significance of difference was tested by one-way ANOVA, followed by Tukey's HSD test. Results: The combination of Smac mimetic LCL-161 and TRAIL induces an irreversible change in phenotype, but not cell death, of luminal MCF-7 breast cancer cells. The cells become small and circular and dissociate from each other and the effect could not be reversed by returning the cells to regular growth medium. The morphology change could be prevented by caspase inhibition using z-VAD-FMK and downregulation of caspase-8. Caspase-7 is also indicated to be of importance since downregulation of this caspase resulted in fewer morphologically changed cells. Enrichment analyses of changes in global gene expression demonstrated that genes associated with estrogen receptor (ER) signaling are downregulated, whereas nuclear factor kappa B- (NF-κB) and interferon- (IFN) driven genes are upregulated in altered cells. However, inhibition of these pathways did not influence the change in morphology. Induction of IFN-induced genes were potentiated but NF-ĸB-driven genes were slightly suppressed by caspase inhibition. Conclusions: The results demonstrate that LCL-161 and TRAIL can irreversibly alter the MCF-7 breast cancer cell phenotype. However, the changes in morphology and global gene expression are mediated via separate pathways.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy