SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0016 7606 OR L773:1943 2674 "

Sökning: L773:0016 7606 OR L773:1943 2674

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bedard, Jean H., et al. (författare)
  • Basaltic sills emplaced in organic-rich sedimentary rocks : Consequences for organic matter maturation and Cretaceous paleo-climate
  • 2024
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of London. - 0016-7606 .- 1943-2674. ; 136:5-6, s. 1982-2006
  • Tidskriftsartikel (refereegranskat)abstract
    • Many continental large igneous provinces coincide with climate perturbations and mass extinctions. When basaltic plumbing systems traverse carbon-rich sedimentary rocks, large volumes of greenhouse gases may be generated. We document how intrusive sills of the Mesozoic High Arctic Large Igneous Province affected surrounding fine-grained, organic-rich siliciclastic rocks of the Sverdrup Basin in the Canadian Arctic Archipelago. Petrographic and X-ray diffraction data from samples located near sills show the presence of high-temperature metamorphic phases (diopside, andalusite, garnet, and cordierite). Raman thermometry on organic matter yields peak temperatures of 385-400 degrees C near sill contacts, tailing off to far-field temperatures of <= 230 degrees C. Samples located >20 m from sills show no systematic change in vitrinite reflectance and have a VRo eq% value of similar to 2.5%, which indicates a temperature of similar to 210 degrees C. The finite element thermal modeling tool SUTRAHEAT was applied to the 17-m-thick Hare Sill, emplaced at 3 km depth at 1105 degrees C. SUTRAHEAT results show that contact-proximal rocks attain temperatures of >700 degrees C for a brief period (similar to 1 year). By 5 years, the Hare Sill is completely solidified (<730 degrees C), and the temperature anomaly collapses rapidly thereafter as the thermal pulse propagates outward. By 10 years, all rocks within 10 m of the Hare Sill are between 450 degrees C and 400 degrees C, rocks at 20 m from the contact attain 200 degrees C, yet far-field temperatures (>50 m) have barely changed. When multiple sills are emplaced between 4 km and 6 km depth, all rocks between sills reach similar to 250 degrees C after 100 years, showing that it is possible to raise regional-scale background temperatures by similar to 150 degrees C for the observed High Arctic Large Igneous Province sill density. Vitrinite reflectance data and pyrolysis results, together with SILLi thermal modeling, indicate that much of the hydrocarbon-generating potential was eliminated by High Arctic Large Igneous Province intrusions. The SILLi model yields similar to 20 tonnes/m(2) of organic equivalent CO2 (all carbon gas is reported as CO2) from the Hare Sill alone when emplaced into Murray Harbour Formation rocks with 5.7 wt% organic carbon, and similar to 226 tonnes/m(2) by emplacement of multiple sills throughout the 2-km-thick Blaa Mountain Group with 3 wt% organic carbon. On a basin scale, this yields a total of similar to 2550 Gt CO2 from the Hare Sill, with similar to 13,000 Gt CO2 being generated by the multiple sill scenario, similar to estimates from other large igneous provinces. Much of the Blaa Mountain Group rocks now have organic carbon contents of <1 wt%, which is consistent with large volumes of carbon-species gas having been generated, likely a mixture of CO2, CH4, and other species. However, organic-rich Murray Harbour Formation rocks show no obvious reduction in organic carbon content toward the Hare Sill intrusive contacts, which suggests that not all of the carbon was lost from the sedimentary package hosting High Arctic Large Igneous Province magmas. We suggest that some of the gas generated by contact metamorphism failed to drain out for lack of high-permeability conduits, and then back-reacted to form calcite cements and pyrobitumen during cooling.
  •  
2.
  • Beranek, Luke P., et al. (författare)
  • Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides
  • 2020
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of America. - 0016-7606 .- 1943-2674. ; 132:9-10, s. 1987-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • Detrital zircon provenance studies of Mesoproterozoic basement and overlying Old Red Sandstone strata in northwestern Svalbard, Arctic Norway, were conducted to test competing models for Caledonian paleogeography and tectonics and constrain the magnitude of orogen-parallel, Silurian to Devonian strike-slip faulting following the Laurentia-Baltica collision. Mesoproterozoic basement strata, cut by earliest Tonian orthogneiss units, mostly yielded 1640-1050 Ma detrital zircon populations that are consistent with pre-Caledonian locations near northeast Greenland. Basal Old Red Sandstone deposits that filled pull-apart basins showed basement-derived signatures but also contained 530-450 Ma and 670-570 Ma populations with slightly subchondritic (epsilon(Hf[t]) = -4 to -2) Hf isotope compositions. These results are consistent with late Silurian-Early Devonian proximity to the northeast Greenland Caledonides and Pearya, which indicates limited (<200 km) strike-slip displacement of Svalbard's Caledonian allochthons after the Laurentia-Baltica collision. Previously interpreted connections between the Svalbard Old Red Sandstone and British Caledonides are incompatible with these detrital zircon results. Lochkovian Old Red Sandstone strata were deposited after a second episode of strike-slip faulting and show recycled basement signatures. The lack of 530-450 Ma and 670-570 Ma populations suggests that the second deformation episode reorganized local drainages. Pragian-Givetian strata have provenance from local Old Red Sandstone sources that were uplifted during a third and final episode of strike-slip deformation. The results indicate that northern Caledonian (Svalbard, Pearya) crustal evolution was characterized by the reworking of Mesoproterozoic-Paleoproterozoic sources and mostly <600 m.y. crustal residence times, whereas the southern Caledonides (UK, Ireland) show evidence for the reworking of older basement and mostly >600 m.y. crustal residence times.
  •  
3.
  • Burchardt, Steffi, et al. (författare)
  • The Slaufrudar pluton, southeast Iceland : An example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 124:1-2, s. 213-227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tertiary Slaufrudalur pluton is the largest granitic intrusion exposed in Iceland. Five glacial valleys cut through the uppermost 900 m of the pluton, exposing spectacular sections through its roof, walls, and interior. The wall contacts are subvertical and sharp. Only in the northeast and southwest is the wall contact characterized by brittle faulting. The pluton roof is smooth at map scale, so that the overall cross-sectional shape of the pluton and its internal layering indicate emplacement by incremental floor sinking through cauldron subsidence. A pronounced elongation of the pluton, parallel to the trend of regional fissure swarms, and its angular shape in map view indicate strong tectonic control on horizontal ring-fault propagation, whereas faulted wall contacts represent step-over structures between the earlier-formed ring faults. On outcrop scale, the roof contact exhibits numerous steps, faults, and apophyses associated with conjugate fracture sets that are parallel and perpendicular to the strike of the length of the pluton. These structures were presumably formed by sequential inflation and deflation of the pluton during episodic magma intrusion and therefore are closely coupled to cauldron subsidence. As a result of roof fracturing and magma injection along the fractures, roof material is found partly or completely detached within the granite. The Slaufrudalur pluton therefore provides new insight into the coupling of the emplacement mechanisms of cauldron subsidence and magmatic stoping in the upper crust.
  •  
4.
  • Carracedo, J. C., et al. (författare)
  • Evolution of ocean-island rifts : The northeast rift zone of Tenerife, Canary Islands
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 123:3-4, s. 562-584
  • Tidskriftsartikel (refereegranskat)abstract
    • The northeast rift zone of Tenerife presents a superb opportunity to study the entire cycle of activity of an oceanic rift zone. Field geology, isotopic dating, and magnetic stratigraphy provide a reliable temporal and spatial framework for the evolution of the NE rift zone, which includes a period of very fast growth toward instability (between ca. 1.1 and 0.83 Ma) followed by three successive large landslides: the Micheque and Guimar collapses, which occurred approximately contemporaneously at ca. 830 ka and on either side of the rift, and the La Orotava landslide (between 690 +/- 10 and 566 +/- 13 ka). Our observations suggest that Canarian rift zones show similar patterns of development, which often includes overgrowth, instability, and lateral collapses. Collapses of the rift flanks disrupt established fissural feeding systems, favoring magma ascent and shallow emplacement, which in turn leads to magma differentiation and intermediate to felsic nested eruptions. Rifts and their collapses may therefore act as an important factor in providing architectural and petrological variability to oceanic volcanoes. Conversely, the presence of substantial felsic volcanism in rift settings may indicate the presence of earlier landslide scars, even if concealed by postcollapse volcanism. Comparative analysis of the main rifts in the Canary Islands outlines this general evolutionary pattern: (1) growth of an increasingly high and steep ridge by concentrated basaltic fissure eruptions; (2) flank collapse and catastrophic disruption of the established feeder system of the rift; (3) postcollapse centralized nested volcanism, commonly evolving from initially ultramafic-mafic to terminal felsic compositions (trachytes, phonolites); and (4) progressive decline of nested eruptive activity.
  •  
5.
  • Cawood, Peter A., et al. (författare)
  • Neoproterozoic to early Paleozoic extensional and compressional history of East Laurentian margin sequences : The Moine Supergroup, Scottish Caledonides
  • 2015
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127:3-4, s. 349-371
  • Tidskriftsartikel (refereegranskat)abstract
    • Neoproterozoic siliciclastic-dominated sequences are widespread along the eastern margin of Laurentia and are related to rifting associated with the breakout of Laurentia from the supercontinent Rodinia. Detrital zircons from the Moine Supergroup, NW Scotland, yield Archean to early Neoproterozoic U-Pb ages, consistent with derivation from the Grenville-Sveconorwegian orogen and environs and accumulation post–1000 Ma. U-Pb zircon ages for felsic and associated mafic intrusions confirm a widespread pulse of extension-related magmatism at around 870 Ma. Pegmatites yielding U-Pb zircon ages between 830 Ma and 745 Ma constrain a series of deformation and metamorphic pulses related to Knoydartian orogenesis of the host Moine rocks. Additional U-Pb zircon and monazite data, and 40Ar/39Ar ages for pegmatites and host gneisses indicate high-grade metamorphic events at ca. 458–446 Ma and ca. 426 Ma during the Caledonian orogenic cycle.The presence of early Neoproterozoic siliciclastic sedimentation and deformation in the Moine and equivalent successions around the North Atlantic and their absence along strike in eastern North America reflect contrasting Laurentian paleogeography during the breakup of Rodinia. The North Atlantic realm occupied an external location on the margin of Laurentia, and this region acted as a locus for accumulation of detritus (Moine Supergroup and equivalents) derived from the Grenville-Sveconorwegian orogenic welt, which developed as a consequence of collisional assembly of Rodinia. Neoproterozoic orogenic activity corresponds with the inferred development of convergent plate-margin activity along the periphery of the supercontinent. In contrast in eastern North America, which lay within the internal parts of Rodinia, sedimentation did not commence until the mid-Neoproterozoic (ca. 760 Ma) during initial stages of supercontinent fragmentation. In the North Atlantic region, this time frame corresponds to a second pulse of extension represented by units such as the Dalradian Supergroup, which unconformably overlies the predeformed Moine succession.
  •  
6.
  • Cawood, P. A., et al. (författare)
  • Orogenesis without collision : Stabilizing the Terra Australis accretionary orogen, eastern Australia
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 123:11-12, s. 2240-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neoproterozoic to end-Paleozoic Terra Australis orogen extended along the Gondwana margin of the paleo–Pacific Ocean, and it now provides a detailed record of orogenic activity and continental stabilization within an ongoing convergent, accretionary plate margin. New geochronological data from end-Paleozoic plutonic and volcanic rocks associated with the Gondwanide orogeny in the New England region of eastern Australia, integrated with information on the nature and timing of associated sedimentation, deformation, and metamorphism, allow resolution of a high-fidelity record of orogenesis.At the end of the Carboniferous, around 305 Ma, convergent margin magmatism, which had been active along the western margin of the New England region, terminated and was followed by a short pulse of regional compressional deformation and metamorphism, marking the commencement of the Tablelands phase of Gondwanide orogenesis. Deformation was almost immediately followed by the onset of clastic sedimentation and local calc-alkaline volcanism, dated at 293 Ma, in the extensional Barnard Basin. Emplacement of the two New England S-type granitic suites, the Bundarra and the Hillgrove suites, along with localized high-temperature, low-pressure metamorphism, was essentially contemporaneous, ranging in age from 296 to 288 Ma, and overlapped in time with I-type magmatism and the switch from regional compression to extension and Barnard Basin rifting.The Hunter-Bowen phase of the Gondwanide orogeny commenced with contractional deformation, resulting in termination of sedimentation in the Barnard Basin and regional deformation and metamorphism across New England and into the Sydney and Gunnedah basins to the west at around 265–260 Ma. Contractional loading of the Sydney and Gunnedah basins resulted in their conversion from extensional to foreland basins, which received ongoing pulses of sediment from the New England orogenic welt until 230 Ma. The Hunter-Bowen phase was associated with widespread I-type plutonism and volcanic activity in New England that ceased around 230 Ma, marking the termination of Gondwanide orogenesis.Orogenesis occurred in an evolving convergent plate-margin setting. S- and I-type magmatic activity ranging in age from ca. 300 to 230 Ma represents a stepping out of arc magmatism from the western margin of New England (prior to 305 Ma) into the preexisting arc-trench gap. There is no evidence that deformation was related to the collision of the convergent margin with a major lithospheric mass, and the widespread development of extensional basins in the eastern third of Australia in the Early Permian indicates control by phenomena acting on a continental scale, probably changing plate kinematics associated with the amalgamation of Pangea.
  •  
7.
  • Greenwood, Sarah L., et al. (författare)
  • Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the western Ross Sea
  • 2012
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 124:11-12, s. 1736-1749
  • Tidskriftsartikel (refereegranskat)abstract
    • The long-term behavior of the East and West Antarctic Ice Sheets, and their respective responses to forcing provide essential context for assessment of modern dynamic changes in ice-flow regimes and ice-sheet and shelf margins. The western Ross Sea discharges ice from both the East and West Antarctic Ice Sheets, and the paleoglacial record from this region is therefore valuable in unraveling their long-term behavior. New, high-resolution multibeam bathymetric data reveal snapshots of well-preserved glacial landforms on the seafloor around Ross Island and McMurdo Sound. Glacial lineations, grounding zone wedges, draped recessional moraines, and meltwater channels record a series of different ice-flow events in the region, contradictions between which require major phases of ice-flow reorganization. From the glacial geomorphology, we reconstruct a four-stage model of ice-flow evolution for the last glacial cycle, consisting of: (1) northeastward flow into the Ross Sea from McMurdo Sound; (2) westward flow from the Ross Sea, around Ross Island, and onto the Victoria Land coast and coastal seafloor trough; (3) a deglacial phase of ice-sheet thinning, minor shifts in flow, and grounding line retreat into McMurdo Sound; and (4) grounding line pinning on Ross Island during regional retreat, uncoupling of a remnant Ross Island ice cap, and local oscillation of Victoria Land outlet glaciers. We find that East Antarctic Ice Sheet ice discharge had a strong influence on ice-flow geometry in this part of the Ross Sea during the last glacial stage, but that it was not necessarily in phase with the behavior of the West Antarctic Ice Sheet. It is similarly evident that the ice streams that drained the Ross Sea over the continental shelf at the Last Glacial Maximum did not all operate synchronously, and exerted different drawdown power at different times. Finally, we conclude that Ross Island acts as an important pinning point in the Ross Sea ice-sheet-shelf system, stabilizing grounding line retreat and encouraging lasting ice-shelf development.
  •  
8.
  • Lescoutre, Rodolphe, et al. (författare)
  • Large-scale, flat-lying mafic intrusions in the Baltican crust and their influence on basement deformation during the Caledonian orogeny
  • 2022
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of America. - 0016-7606 .- 1943-2674. ; 134:11-12, s. 3022-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fennoscandian Shield in central Sweden displays a complex structural and compositional architecture that is mainly related to the Proterozoic history of the Baltica paleocontinent. In its western parts, the Precambrian basement is covered by the allochthonous rocks of the Caledonide orogen, and direct information about the underlying crust is restricted to a few unevenly distributed basement windows in western Sweden and Norway. In this study, we use preliminary results from the second borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-2), new gravity data, forward gravity, and magnetic modeling and interpretation of seismic reflection profiles to assess the 3-D architecture of the basement. Our results reveal a wide (∼100 km) and dense network of mainly flat-lying and saucer-shaped dolerites intruding the volcanic and granitic upper crustal rocks of the Transscandinavian Igneous Belt. Similar intrusion geometries related to 1.2 Ga dolerites can be recognized in the Fennoscandian Shield. We discuss that the formation of these sill complexes occurred in a lithologically and structurally heterogeneous crust during transtension, which is in disagreement with the current understanding of sill emplacement that involves crustal shortening, layering, or anisotropy of the host rock. Our seismic interpretation and the structural observations from the COSC-2 drilling show that part of the Caledonian-related basement deformation was localized along the margins of the dolerite sheets. We propose that the dolerite intrusion geometry, akin to a flat-ramp geometry, guided the basement deformation during the Caledonian orogeny.
  •  
9.
  • Mays, Chris, 1983-, et al. (författare)
  • Refined Permian-Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems
  • 2020
  • Ingår i: Geological Society of America Bulletin. - Boulder : Geological Society of America. - 0016-7606 .- 1943-2674. ; 132, s. 1489-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near continuous, age-constrained succession of high southern paleolatitude (∼65–75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian–Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian–Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian–Spathian floral overturn event in high southern latitudes.
  •  
10.
  • Ng, S.W.-P., et al. (författare)
  • Petrogenesis of Malaysian granitoids in the Southeast Asian Tin Belt: Part 1. Geochemical and Sr-Nd isotopic characteristics.
  • 2015
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127, s. 1209-1237
  • Tidskriftsartikel (refereegranskat)abstract
    • The Malaysian granitoids of the Southeast Asian tin belt have been traditionally divided into a Permian to Late Triassic “I-type”–dominated arc-related Eastern province (Indochina terrane) and a Late Triassic “S-type”–dominated collision-related Main Range province (Sibumasu terrane), separated by the Bentong-Raub Paleo-Tethyan suture that closed in the Late Triassic. The present study, however, shows that this model is oversimplified and that the direct application of Chappell and White’s (1974) I- and S-type classification cannot account for many of the characteristics shared by Malaysian granitoids. Despite being commonly hornblende bearing, as is typical for I-type granites, the roof zones of the Eastern province granites are hornblende free. In addition, the Main Range province granitoids contain insignificant primary muscovite, and are dominated by biotite granites, mineralogically similar to many of the plutons of the Eastern province. In general, the Malaysian granitoids from both provinces are more enriched in high field strength elements than typical Cordilleran I- and S-type granitoids. The mineralogy and geochemistry of the Eastern province granitoids, and their relationship with contemporaneous volcanics, confirm their I-type nature. The bulk liquid lines of descent of both granitic provinces largely overlap with one another. Sr-Nd isotopic data further demonstrate that the Malaysian granitoids, especially those of the Main Range, were hybridized melts derived from two “end-member” source regions, one of which is isotopically similar to the Kontum orthoamphibolites and the other akin to the Kontum paragneisses of the Indochina block. However, there are differences in the source rocks for the two provinces, and it is suggested in this paper that these are related to differing proportions of igneous and sedimentary protoliths. The incorporation of sedimentary-sourced melts in the Eastern province is insignificant, which allowed the granites in this belt to maintain their I-type nature. The presence of minor primary tin mineralization in the Eastern province compared to the much more significant tin endowment in the Main Range is considered to reflect the incorporation of a smaller proportion of sedimentary protolith in the melt products of the former.                  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy