SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0022 1295 OR L773:1540 7748 "

Sökning: L773:0022 1295 OR L773:1540 7748

  • Resultat 1-10 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Amjad, Asma, et al. (författare)
  • Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons
  • 2015
  • Ingår i: The Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 145:4, s. 285-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl− was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl− channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl− channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl− channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl− currents in mouse vomeronasal sensory neurons.
  •  
3.
  • Angelini, Marina, et al. (författare)
  • Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current
  • 2021
  • Ingår i: The Journal of General Physiology. - : ROCKEFELLER UNIV PRESS. - 0022-1295 .- 1540-7748. ; 153:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of I-Ca,I-L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late I-Ca,I-L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak I-Ca,I-L, which is essential for proper excitation-contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late I-Ca,I-L with minimal effect on peak current. Scaling our investigation from a human Ca(V)1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces I-Ca,I-L noninactivating component in a human Ca(V)1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late I-Ca,I-L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late I-Ca,I-L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late I-Ca,I-L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of Ca(V)1.2 channels rather than blocking their pore, largely preserving contractility.
  •  
4.
  •  
5.
  •  
6.
  • Bohannon, Briana M., et al. (författare)
  • Polyunsaturated fatty acids produce a range of activators for heterogeneous I-Ks channel dysfunction
  • 2020
  • Ingår i: The Journal of General Physiology. - : ROCKEFELLER UNIV PRESS. - 0022-1295 .- 1540-7748. ; 152:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Repolarization and termination of the ventricular cardiac action potential is highly dependent on the activation of the slow delayed-rectifier potassium I-Ks channel. Disruption of the I-Ks current leads to the most common form of congenital long QT syndrome (LQTS), a disease that predisposes patients to ventricular arrhythmias and sudden cardiac death. We previously demonstrated that polyunsaturated fatty acid (PUFA) analogues increase outward K+ current in wild type and LQTS-causing mutant I-Ks channels. Our group has also demonstrated the necessity of a negatively charged PUFA head group for potent activation of the I-Ks channel through electrostatic interactions with the voltage-sensing and pore domains. Here, we test whether the efficacy of the PUFAs can be tuned by the presence of different functional groups in the PUFA head, thereby altering the electrostatic interactions of the PUFA head group with the voltage sensor or the pore. We show that PUFA analogues with taurine and cysteic head groups produced the most potent activation of I-Ks channels, largely by shifting the voltage dependence of activation. In comparison, the effect on voltage dependence of PUFA analogues with glycine and aspartate head groups was half that of the taurine and cysteic head groups, whereas the effect on maximal conductance was similar. Increasing the number of potentially negatively charged moieties did not enhance the effects of the PUFA on the I-Ks channel. Our results show that one can tune the efficacy of PUFAs on I-Ks channels by altering the pK(a) of the PUFA head group. Different PUFAs with different efficacy on I-Ks channels could be developed into more personalized treatments for LQTS patients with a varying degree of I-Ks channel dysfunction.
  •  
7.
  • Braun, Matthias, et al. (författare)
  • Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells
  • 2007
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 129:3, s. 221-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The release gamma-aminobutyric acid (GABA) and ATP from rat beta cells was monitored using an electrophysiological assay based on overexpression GABAA or P2X2 receptor ion channels. Exocytosis of LDCVs, detected by carbon fiber amperometry of serotonin, correlated strongly (similar to 80%) with ATP release. The increase in membrane capacitance per ATP release event was 3.4 fF, close to the expected capacitance of an individual LDCV with a diameter of 0.3 mu m. ATP and GABA were coreleased with serotonin with the same probability. Immunogold electron microscopy revealed that similar to 15% of the LDCVs contain GABA. Prespike "pedestals," reflecting exit of granule constituents via the fusion pore, were less frequently observed for ATP than for serotonin or GABA and the relative amplitude (amplitude of foot compared to spike) was smaller: in some cases the ATP-dependent pedestal was missing entirely. An inward tonic current, not dependent on glucose and inhibited by the GABAA receptor antagonist SR95531, was observed in beta cells in clusters of islet cells. Noise analysis indicated that it was due to the activity of individual channels with a conductance of 30 pS, the same as expected for individual GABA(A) Cl- channels with the ionic gradients used. We conclude that (a) LDCVs accumulate ATP and serotonin; (b) regulated release of GABA can be accounted for by exocytosis of a subset of insulin-containing LDCVs; (c) the fusion pore of LDCVs exhibits selectivity and compounds are differentially released depending on their chemical properties (including size); and (d) a glucose-independent nonvesicular form of GABA release exists in beta cells.
  •  
8.
  • Braun, Matthias, et al. (författare)
  • Regulated Exocytosis of GABA-containing Synaptic-like Microvesicles in Pancreatic {beta}-cells.
  • 2004
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 123:3, s. 191-204
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored whether {gamma}-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic ß-cells. To this end, ß-cells were engineered to express GABAA-receptor Cl--channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every ß-cell contains ~3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl--currents, was observed during membrane depolarizations from -70 mV to voltages beyond -40 mV or when Ca2+ was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca2+ entry was inhibited using Cd2+. Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes ~1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic ß-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.
  •  
9.
  • Broomand, Amir, et al. (författare)
  • Molecular movement of the voltage sensor in a K channel
  • 2003
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 122:6, s. 741-748
  • Tidskriftsartikel (refereegranskat)abstract
    • The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 Å) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 Å) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model.
  •  
10.
  • Bruening-Wright, Andrew, et al. (författare)
  • Kinetic relationship between the voltage sensor and the activation gate in spHCN channels
  • 2007
  • Ingår i: The Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 130:1, s. 71-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational changes and to correlate these to the different activation steps in spHCN channels. We show that S4 undergoes two distinct conformational changes during voltage activation. Analysis of the fluorescence signals suggests that the N-terminal region of S4 undergoes conformational changes during a previously characterized mode shift in HCN channel voltage dependence, while a more C-terminal region undergoes an additional conformational change during gating charge movements. We fit our fluorescence and ionic current data to a previously proposed 10-state allosteric model for HCN channels. Our results are not compatible with a fast S4 motion and rate-limiting channel opening. Instead, our data and modeling suggest that spHCN channels open after only two S4s have moved and that S4 motion is rate limiting during voltage activation of spHCN channels. © The Rockefeller University Press.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 68
Typ av publikation
tidskriftsartikel (64)
konferensbidrag (4)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Liin, Sara (6)
Rorsman, Patrik (5)
Elinder, Fredrik (5)
Delemotte, Lucie (4)
Chibalin, AV (3)
Arner, Anders (3)
visa fler...
Arner, A (3)
Maurya, Devendra Kum ... (3)
Menini, Anna (3)
Sejersen, T (2)
Renström, Erik (2)
Li, M. (2)
Hernandez-Clavijo, A ... (2)
Pifferi, Simone (2)
Elinder, F (2)
Salehi, Albert (2)
Kotova, O (2)
Zhang, Q. (1)
Aalkjær, Christian (1)
Li, G. (1)
Lundquist, Ingmar (1)
Westerblad, H (1)
Takahashi, H. (1)
Holmgren, A (1)
Lindskog, Cecilia (1)
Silverå Ejneby, Mali ... (1)
Wang, W. (1)
von Ballmoos, Christ ... (1)
Lindahl, Erik, 1972- (1)
Matchkov, VV (1)
Seino, S. (1)
Ramracheya, R. (1)
Rorsman, Patrik, 195 ... (1)
Mulder, Hindrik (1)
Clark, Anne (1)
Berggren, Per-Olof (1)
Hägglund, Per (1)
Bertorello, AM (1)
Drew, David (1)
Arhem, P (1)
Agostinelli, Emilio (1)
Dibattista, Michele (1)
Lanner, JT (1)
Malmqvist, Ulf (1)
Larsson, Johan (1)
Gromada, J (1)
Lundström, Ingemar, ... (1)
Brask, Johan (1)
Lund, Per-Eric (1)
Gourdon, Pontus (1)
visa färre...
Lärosäte
Linköpings universitet (21)
Karolinska Institutet (18)
Uppsala universitet (9)
Lunds universitet (9)
Kungliga Tekniska Högskolan (8)
Umeå universitet (5)
visa fler...
Stockholms universitet (5)
Linnéuniversitetet (3)
Göteborgs universitet (2)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (68)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Naturvetenskap (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy