SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0028 2448 "

Sökning: L773:0028 2448

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bessel, V. V., et al. (författare)
  • Current trends in global energy sector development with the use of hybrid technologies in energy supply systems
  • 2020
  • Ingår i: Neftânoe hozâjstvo. - : Neftyanoe Khozyaistvo. - 0028-2448. ; 2020:3, s. 31-35
  • Tidskriftsartikel (refereegranskat)abstract
    • The article presents the modern trends in development of global energy sector. It is shown that in ХХ-ХХI centuries the growth rate of energy consumption outpaces the growth rate of the Earth's population, which, in turn, is constantly increasing. The analysis of energy consumption structure dynamics for the period of 1980-2018 shows the leading rates of growth of a share of natural gas and renewable energy in the world energy consumption balance, associated with energy efficiency and huge gas resources, inexhaustible renewable energy resources and low level of environmentally harmful emissions when using these types of energy. The analysis of the tendency of the mineral-raw material base of hydrocarbon raw materials development shows that the growth of oil reserves is provided, basically, by the high-viscosity bituminous oil of the Orinoco river belt in Venezuela and Athabasca province in Canada, and natural gas in four countries Russia, Turkmenistan, Iran and Qatar. The trend of change in the hydrocarbon reserves availability index is estimated; currently it is equal to 53 years and tends to decline further. Based on the analysis of the fossil fuels share used in centralized electricity generation the conclusion was made about low efficiency of thermal energy. It is shown that in the medium and long term the world energy sector will be developed with the use of hybrid energy technologies that will significantly improve the energy supply efficiency and reliability especially in regions with undeveloped energy infrastructure. Substantial redistribution of energy load from thermal energy to energy generation based on hybrid technologies will make it possible to use hydrocarbons not as fuel but as raw materials for innovative products of oil and gas chemistry. Thermal energy based on the combustion of fossil fuels and the use of nuclear energy will dominate in the global energy mix, but its share will gradually decrease. In the medium term, the share of natural gas in the global energy balance will continue to increase with a renewable energy sources growing contribution to the energy supply that will be developed as hybrid technologies.
  •  
2.
  • Bessel, V. V., et al. (författare)
  • Energy efficiency and reliability increase for remote and autonomous objects energy supply of russian oil and gas complex
  • 2018
  • Ingår i: Neftânoe hozâjstvo. - : Neftyanoe Khozyaistvo. - 0028-2448. ; :9, s. 144-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the global energy market development allows to conclude that natural gas is becoming the main energy resource in the structure of world energy consumption in the nearest future. At the same time the statistical data show that there is a significant reduction in the hydrocarbon reserves over hydrocarbon production, and the time is right to concern about the development of renewable energy projects. The authors analyzed the indicators of the availability of the hydrocarbon reserves over hydrocarbon production. Calculations show that the values of the reserves-to-production ratio are estimated as 90 years for organic fuel and as 54 years for hydrocarbon raw materials in 2017. The projects of "hybrid" energy that combine the traditional production of hydrocarbons with the development of renewable energy projects will be the most needed in the medium term. Some proposals on the subject of this article are based on the collaborate research of Gubkin University and Royal Institute of Technology (Stockholm, Sweden). Currently the autonomous combined power installation on renewable energy sources with energy storage system application is very attractive. The analysis shows that the most objects of the Russian oil and gas complex are located in areas that are promising for the practical use of renewable energy such as solar and wind energy. The results of modeling show that the autonomous combined power installation on renewable energy sources with energy storage system application is one of the possible ways to increase the energy efficiency and reliability of remote oil and gas facilities energy supply.
  •  
3.
  • Kutcherov, Vladimir G., 1955-, et al. (författare)
  • Kerogen oil from oil shale: Results of industrial projects
  • 2023
  • Ingår i: Neftânoe hozâjstvo. - : Neftyanoe Khozyaistvo. - 0028-2448. ; 2023:5, s. 101-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The article provides information on the main methods of the extraction of synthetic (kerogen) oil from oil shale and evaluates the results of the industrial implementation of these methods outside the Russian Federation. According to the US Geological Survey the geological resources of kerogen oil reach 390 billion tons (not including Russia). Oil shale processing methods are divided into ex-situ and in-situ. The main method of producing synthetic oil is the method of ex-situ retorting, while annual production volumes do not exceed 2 million tons. Currently, there are only nine active commercial projects dealing with synthetic oil production: three in Estonia and six in China. Another five projects have pilot status. None of the pilot projects related to application of in-situ methods of the synthetic oil production has entered the commercial phase. All five pilot projects based on in-situ methods in the last two decades have been closed or stopped. Major oil companies such as Shell, Chevron, ExxonMobil withdrew from all projects related to the processing of oil shale due to the high energy intensity of the processes and possible serious environmental problems. The processing of oil shale has a significant negative impact on the environment, primarily associated with groundwater and air pollution. The data presented in the article suggests that it is too early to claim a breakthrough in the development of kerogen oil.
  •  
4.
  • Shakhverdiev, A. K., et al. (författare)
  • Alternative concept of monitoring and optimization water flooding of oil reservoirs in the conditions of instability of the displacement front
  • 2019
  • Ingår i: Neftânoe hozâjstvo. - : Neftyanoe Khozyaistvo. - 0028-2448. ; 2019:12, s. 118-123
  • Tidskriftsartikel (refereegranskat)abstract
    • It has always been an urgent issue for the oil and gas industry to improve oil, gas, and condensate recovery at liquid and gaseous hydrocarbon fields developed with the use of artificial formation pressure maintenance techniques that involve injection of water or water combined with other displacement agents. Therefore, due to the aforesaid issues, permanent attention should still be paid to the practical problem of optimizing the non-stationary hydrodynamic pressure applied to a reservoir by regulating the operating conditions of the production and injection wells, development process optimization in general, and water flooding in particular. The theory of Buckley and Leverett, does not take into account the loss of stability of the displacement front, which provokes a stepwise change and the triple value of water saturation. Traditionally a mathematically simplified approach was proposed-a repeatedly differentiable approximation to eliminate the “jump” in water saturation. Such a simplified solution led to negative consequences well-known from the water flooding practice, recognized by experts as “viscous instability of the displacement front” and “fractal geometry of displacement front”. The core of the issue is an attempt to predict the beginning of the stability loss of the front of oil displacement by water and to prevent its negative consequences on the water flooding process under difficult conditions of interaction of hydro-thermodynamics, capillary, molecular, inertial, and gravitational forces. In this study, catastrophe theory methods applied for the analysis of nonlinear polynomial dynamical systems are used as a novel approach. Namely, a mathematical growth model is developed and an inverse problem is formulated so that the initial coefficients of the system of differential equations for a two-phase flow can be deter mined using this model. A unified control parameter has been selected, which enables one to propose and validate a discriminant criterion for oil and water growth models for monitoring and optimizing. 
  •  
5.
  • Shestopalov, Yury, 1953-, et al. (författare)
  • Alternative conception of the monitoring and optimization of water flooding of oil reservoirs  under instability of displacement front
  • 2019
  • Ingår i: Oil industry (Neftyanoye khozyaystvo). - Moscow. - 0028-2448. ; :12, s. 118-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The theory of Buckley and Leverett does not take into account the loss of stability of the displacement front whch provokes a stepwise change and the triple value of water saturation. Traditionally a mathematically simplified approach was proposed: a differentiable approximation to eliminate the ' jump' in water saturation. Such a simplified solution led to negative consequences well-know from the water flooding practice, recognized by experts as 'viscous instability of the displacement front' and 'fractal geometry of the displacement front'.The core of the issue is to attempt to predict the beginning of the stability loss of the front of oil displacement by water and to prevent its negative effect on the water flooding process under difficult conditions of interaction of hydro-thermodynamic, capillary, molecular, inertial, and gravitational forces. In this study, catastrophe theory methods applied for the analysis of nonlinear polynomial dynamical systems are used as a novel approach. namely, a mathematical growth model is developed and an inverse problem is formulated so that the initial coefficients of the system of differential equations for a two-phase flow can be determined using this model. A unified control parameter has been selected which enables one to propose and validate a discriminant criterion for  oil and water growth models for monitoring and optimization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy