SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0263 0346 "

Sökning: L773:0263 0346

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfvén, Hannes (författare)
  • Cosmology in the plasma universe
  • 1988
  • Ingår i: Laser and particle beams (Print). - : Cambridge University Press (CUP). - 0263-0346 .- 1469-803X. ; 6, s. 389-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Space observations have opened the spectral regions of X-rays and γ-rays, which are produced by plasma processes. The Plasma Universe derived from observations in these regions is drastically different from the now generally accepted ‘Visual Light Universe’ based on visual light observations alone. Historically this transition can be compared only to the transition from the the geocentric to the heliocentric cosmology.The purpose of this paper is to discuss what criteria a cosmological theory must satisfy in order to be acceptable in the Plasma Universe.
  •  
2.
  • Aurand, Bastian, et al. (författare)
  • A setup for studies of laser-driven proton acceleration at the Lund Laser Centre
  • 2015
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 33:1, s. 59-64
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a setup for the investigation of proton acceleration in the regime of target normal sheath acceleration. The main interest here is to focus on stable laser beam parameters as well as a reliable target setup and diagnostics in order to do extensive and systematic studies on the acceleration mechanism. A motorized target alignment system in combination with large target mounts allows for up to 340 shots with high repetition rate without breaking the vacuum. This performance is used to conduct experiments with a split mirror setup exploring the effect of spatial and temporal separation between the pulses on the acceleration mechanism and on the resulting proton beam.
  •  
3.
  • Badiei, Shahriar, 1969, et al. (författare)
  • Laser-driven nuclear fusion D+D in ultra-dense deuterium: MeV particles formed without ignition
  • 2010
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 28:2, s. 313-317
  • Tidskriftsartikel (refereegranskat)abstract
    • The short D-D distance of 2.3 pm in the condensed material ultra-dense deuterium means that it is possible that only a small disturbance is required to give D+D fusion. This disturbance could be an intense laser pulse. The high excess kinetic energy of several hundred eV given to the deuterons by laser induced Coulomb explosions in the material increases the probability of spontaneous fusion without the need for a high plasma temperature. The temperature calculated from the normal kinetic energy of the deuterons of 630 eV from the Coulomb explosions is 7 MK, maybe a factor of 10 lower than required for ignition. We now report on experiments where several types of high-energy particles from laser impact on ultra-dense deuterium are detected by plastic scintillators. Fast particles with energy up to 2 MeV are detected at a time-of-flight as short as 60 ns, while neutrons are detected at 50 ns time-of-flight after passage through a steel plate. A strong signal peaking at 22.6 keV u-1 is interpreted as due to mainly T retarded by collisions with H atoms in the surrounding cloud of dense atomic hydrogen.
  •  
4.
  • Borghesi, M., et al. (författare)
  • Progress in proton radiography for diagnosis of ICF-relevant plasmas
  • 2010
  • Ingår i: Laser and particle beams (Print). - 0263-0346 .- 1469-803X. ; 28:2, s. 277-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton radiography using laser-driven sources has been developed as a diagnostic since the beginning of the decade, and applied successfully to a range of experimental situations. Multi-MeV protons driven from thin foils via the Target Normal Sheath Acceleration mechanism, offer, under optimal conditions, the possibility of probing laser-plasma interactions, and detecting electric and magnetic fields as well as plasma density gradients with similar to ps temporal resolution and similar to 5-10 mu m spatial resolution. In view of these advantages, the use of proton radiography as a diagnostic in experiments of relevance to Inertial Confinement Fusion is currently considered in the main fusion laboratories. This paper will discuss recent advances in the application of laser-driven radiography to experiments of relevance to Inertial Confinement Fusion. In particular we will discuss radiography of hohlraum and gasbag targets following the interaction of intense ns pulses. These experiments were carried out at the HELEN laser facility at AWE (UK), and proved the suitability of this diagnostic for studying, with unprecedented detail, laser-plasma interaction mechanisms of high relevance to Inertial Confinement Fusion. Non-linear solitary structures of relevance to space physics, namely phase space electron holes, have also been highlighted by the measurements. These measurements are discussed and compared to existing models.
  •  
5.
  • Borgstrom, S, et al. (författare)
  • Time-resolved x-ray spectroscopy of optical-field-ionized plasmas
  • 1995
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 13:4, s. 459-468
  • Tidskriftsartikel (refereegranskat)abstract
    • The time-dependent soft X-ray emission of helium and nitrogen plasmas generated by optical-field ionization is reported. The experiments were carried out by focusing pulses of the high-power Ti:sapphire laser of the Lund Institute of Technology (lambda = 796 nm, pulse duration 150 fs, pulse energy 150 mJ) to a 50-mu m diameter spot close to a nozzle, using He and N-2 as target gases. The emission on He+, N4+, and N3+ resonance lines was recorded by means of a flat-field grating spectrometer coupled to an X-ray streak camera. A pronounced difference in the temporal shape of the emission of the Lyman-alpha line of hydrogen-like helium and of the 2p-3d resonance lines of lithium-like and beryllium-like nitrogen was observed. The helium line exhibited an initial spike followed by a slow revival of the emission, whereas the nitrogen lines showed a slow decay after a fast initial rise. These observations are explained with the help of simulations.
  •  
6.
  • Brenner, C. M., et al. (författare)
  • Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets
  • 2011
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 29:3, s. 345-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.
  •  
7.
  • Bret, Antoine, et al. (författare)
  • Departure from MHD prescriptions in shock formation over a guiding magnetic field
  • 2017
  • Ingår i: Laser and particle beams (Print). - : Cambridge University Press. - 0263-0346 .- 1469-803X. ; 35, s. 513-519
  • Tidskriftsartikel (refereegranskat)abstract
    • In plasmas where the mean-free-path is much larger than the size of the system, shock waves can arise with a front much shorter than the mean-free path. These so-called "collisionless shocks" are mediated y collective plasma interactions. Studies conducted so far on these shocks found that although binary collisions are absent, the distribution functions are thermalized downstream by scattering on the fields, so that magnetohydrodynamic prescriptions may apply. Here we show a clear departure from this pattern in the case of Weibel shocks forming over a flow-aligned magnetic field. A micro-physical analysis of the particle motion in the Weibel filaments shows how they become unable to trap the flow in the presence of too strong a field, inhibiting the mechanism of shock formation. Particle-in-cell simulations confirm these results.
  •  
8.
  • Bret, Antoine, et al. (författare)
  • Theory of the formation of a collisionless Weibel shock: pair vs. electron/proton plasmas
  • 2016
  • Ingår i: Laser and particle beams (Print). - 0263-0346 .- 1469-803X. ; 34:2, s. 362-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless shocks are shocks in which the mean-free path is much larger than the shock front. They are ubiquitous in astrophysics and the object of much current attention as they are known to be excellent particle accelerators that could be the key to the cosmic rays enigma. While the scenario leading to the formation of a fluid shock is well known, less is known about the formation of a collisionless shock. We present theoretical and numerical results on the formation of such shocks when two relativistic and symmetric plasma shells (pair or electron/proton) collide. As the two shells start to interpenetrate, the overlapping region turns Weibel unstable. A key concept is the one of trapping time τp, which is the time when the turbulence in the central region has grown enough to trap the incoming flow. For the pair case, this time is simply the saturation time of the Weibel instability. For the electron/proton case, the filaments resulting from the growth of the electronic and protonic Weibel instabilities, need to grow further for the trapping time to be reached. In either case, the shock formation time is 2τp in two-dimensional (2D), and 3τp in 3D. Our results are successfully checked by particle-in-cell simulations and may help designing experiments aiming at producing such shocks in the laboratory.
  •  
9.
  • Esmaeildoost, Niloofar, et al. (författare)
  • Effects of beam temperature and plasma frequency on the radiation growth rate of a FEL with a laser wiggler
  • 2017
  • Ingår i: Laser and particle beams (Print). - : Hindawi Limited. - 0263-0346 .- 1469-803X. ; 35:2, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • A linearly polarized laser pulse has been employed as a wiggler in a free-electron laser (FEL) in the presence of a plasma background for generating short wavelength radiation down to the extreme ultraviolet ray and X-ray spectral regions. Introducing plasma background in the FEL interaction region would lessen the beam energy requirement and also enhance both the beam current and the electron-bunching process. This configuration affords the possibility of scaling the device to more compact FELs and would have a higher tunability by changing the plasma density and the temperature of the electron beam. Electron trajectories have been analyzed using single-particle dynamics. The effect of plasma density on electron orbits has been investigated. A polynomial dispersion relation considering longitudinal thermal motion has been derived, by employing perturbation analysis. Numerical studies indicate that by increasing plasma density, the growth rate for groups I and II decreases, while the growth rate for group III increases. In addition, the effect of beam temperature and cyclotron frequency on the growth rate has been discussed. It has been found that by increasing the thermal velocity of the electron beam, the growth rate for groups I and III trivially decreases, while it increases for group II orbits. Besides, an increase in cyclotron frequency cause growth enhancement for group I orbits, while it present a growth decrement for group II and III orbits.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy