SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0567 7920 OR L773:1732 2421 "

Sökning: L773:0567 7920 OR L773:1732 2421

  • Resultat 1-10 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, Pascal, et al. (författare)
  • An anhanguerian pterodactyloid mandible from the lower Valanginian of Northern Germany, and the German record of Cretaceous pterosaurs
  • 2021
  • Ingår i: Acta Palaeontologica Polonica. - : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 66:3, s. S5-S12
  • Tidskriftsartikel (refereegranskat)abstract
    • The record of Cretaceous pterosaur remains from Germany is sparse. The material recovered to date includes the fragmentary holotypes of Targaryendraco wiedenrothi and Ctenochasma roemeri, as well as a few isolated pterodactyloid teeth and some indeterminate skeletal elements, together with a plaster cast of a large Purbeckopus manus imprint. Here, we report the discovery of a pterodactyloid pterosaur mandible from lower Valanginian strata of the Stadthagen Formation in the Lower Saxony Basin of Northern Germany. Based on the size and spacing of its alveoli, this fossil is attributable to the cosmopolitan Early Cretaceous pteranodontoid clade Anhangueria. Moreover, it represents the first and only known pterosaur from the Valanginian of Germany and is one of only a handful Valanganian pterosaur occurrences presently recognized worldwide. In addition to the approximately coeval Coloborhynchus clavirostris from the Hastings Bed Group of southern England, the Stadthagen Formation pterosaur mandible is among the stratigraphically oldest identifiable anhanguerians.
  •  
2.
  • Balthasar, Uwe, et al. (författare)
  • Early Cambrian "soft-shelled" brachiopods as possible stem-group phoronids
  • 2009
  • Ingår i: Acta Palaeontologica Polonica. - 0567-7920 .- 1732-2421. ; 54:2, s. 307-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Brachiopods and phoronids are widely recognised as closely related lophophorate phyla. but the lack of morphological intermediates linking the bivalved bodyplan of brachiopods with tubular phoronids has frustrated precise phylogenetic placement. Here we describe Lingulosacculus nuda gen. et sp. nov., a new "soft-shelled" brachiopod from the Early Cambrian Mural Formation of western Alberta which provides a plausible candidate for a phoronid stem-group within (paraphyletic) Brachiopoda. In addition to its non-biomineralised shell, L. nuda had a ventral valve with an exceptionally long, pocket-like extension (pseudointerarea) that Would have allowed the transformation of criss-crossing brachiopod-type musculature to the longitudinal arrangement typical of phoronids. "Soft-shelled" linguliform brachiopods have previously been reported from both the Chengjiang and Burgess Shale Lagerstatten which, together with L. nuda. probably represent two independent losses of shell mineralisation in brachiopods.
  •  
3.
  • Benoit, Julien, et al. (författare)
  • Palaeoneurology and palaeobiology of the dinocephalian Anteosaurus magnificus
  • 2021
  • Ingår i: Acta Palaeontologica Polonica. - Warsaw : Polish Academy of Science. - 0567-7920 .- 1732-2421. ; 66, s. 29-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Dinocephalians (Therapsida), some of the earliest amniotes to have evolved large body size, include the carnivorous Anteosauria and mostly herbivorous Tapinocephalia. Whilst the palaeoneurology of the Tapinocephalia has been investigated in Moschognathus whaitsi, that of the Anteosauria remains completely unknown. Here we used X-ray micro-Computed Tomography to study, for the first time, the palaeoneurology of Anteosaurus magnificus. Compared to Moschognathus, we reconstruct Anteosaurus as an agile terrestrial predator based on the enlarged fossa for the floccular lobe of the cerebellum and semicircular canals of the inner ear. A major difference between the two genera resides in the orientation of the braincase, as indicated by the angle between the long axis of the skull and the plane of the lateral semicircular canal. This angle is 25° in Anteosaurus, whereas it is 65° in Moschognathus, which suggests that the braincase of the latter was remodelled as an adaptation to head-butting. This is consistent with less cranial pachyostosis and the retention of a large canine in Anteosauria, which suggests that dentition may have been used for intraspecific fighting and display in addition to trophic interactions. The evolution of a thick skull, horns, and bosses in tapinocephalids parallels the evolutionary reduction of the canine, which lead to a shift of the agonistic function from the mouth to the skull roof, as observed in extant social ungulates. Similarly, tapinocephalians may have developed complex social behaviour.
  •  
4.
  • Betts, Marissa, J., et al. (författare)
  • Shelly fossils from the lower Cambrian White Point Conglomerate, Kangaroo Island, South Australia
  • 2019
  • Ingår i: Acta Palaeontologica Polonica. - : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 64:3, s. 489-522
  • Tidskriftsartikel (refereegranskat)abstract
    • The lower Cambrian (Series 2) White Point Conglomerate (WPC) on Kangaroo Island, South Australia contains exoticclasts representing a diverse array of lithologies, including metamorphics, chert, sandstone, and abundant carbonates,notably archaeocyath-rich bioclastic limestone. Acetic acid digestion of the WPC bioclastic limestone clasts reveals adiverse shelly fauna. This assemblage includes abundant organophosphatic brachiopods such as Cordatia erinae Brockand Claybourn gen. et sp. nov., Curdus pararaensis, Eodicellomus elkaniformiis, Eohadrotreta sp. cf. E. zhenbaensis,Eoobolus sp., Kyrshabaktella davidii, and Schizopholis yorkensis. Additional shelly taxa include the solenopleurid trilobiteTrachoparia? sp., the tommotiids Dailyatia odyssei, Dailyatia decobruta Betts sp. nov., Kelanella sp., and Lapworthellafasciculata, spines of the bradoriid arthropod Mongolitubulus squamifer, and several problematica, such as Stoibostrombuscrenulatus and a variety of tubular forms. The upper age limit for the WPC is constrained by biostratigraphic data fromthe overlying Marsden Sandstone and Emu Bay Shale, which are no younger than the Pararaia janeae Trilobite Zone(Cambrian Series 2, Stage 4). The shelly fossil assemblage from the WPC limestone clasts indicates an upper Dailyatiaodyssei Zone (= Pararaia tatei to lower P. janeae trilobite zones), equivalent to the Atdabanian–early Botoman of theSiberian scheme. This contrasts with the previously suggested late Botoman age for the limestone clasts, based on the diversearchaeocyath assemblage. The minor age difference between the WPC and its fossiliferous limestone clasts suggestsrelatively rapid reworking of biohermal buildups during tectonically-active phases of deposition in the Stansbury Basin.
  •  
5.
  • Campione, Nicolas E., 1982-, et al. (författare)
  • Morphology and evolutionary significance of the atlas-axis complex in varanopid synapsids
  • 2011
  • Ingår i: Acta Palaeontologica Polonica. - : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 56:4, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • The atlas−axis complex has been described in few Palaeozoic taxa, with little effort being placed on examining variation of this structure within a small clade. Most varanopids, members of a clade of gracile synapsid predators, have well preserved atlas−axes permitting detailed descriptions and examination of morphological variation. This study indicates that the size of the transverse processes on the axis and the shape of the axial neural spine vary among members of this clade. In particular, the small mycterosaurine varanopids possess small transverse processes that point posteroventrally, and the axial spine is dorsoventrally short, with a flattened dorsal margin in lateral view. The larger varanodontine varanopids have large transverse processes with a broad base, and a much taller axial spine with a rounded dorsal margin in lateral view. Based on outgroup comparisons, the morphology exhibited by the transverse processes is interpreted as derived in varanodontines, whereas the morphology of the axial spine is derived in mycterosaurines. The axial spine anatomy of Middle Permian South African varanopids is reviewed and our interpretation is consistent with the hypothesis that at least two varanopid taxa are present in South Africa, a region overwhelmingly dominated by therapsid synapsids and parareptiles.
  •  
6.
  • Claybourn, Thomas, 1989-, et al. (författare)
  • Camenellan tommotiids from the Cambrian Series 2 of East Antarctica: biostratigraphy, palaeobiogeography, and systematics
  • 2021
  • Ingår i: Acta Palaeontologica Polonica. - : Instytut Paleobiologii PAN. - 0567-7920 .- 1732-2421. ; 66, s. 207-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Cambrian Series 2 shelly fossils from thick carbonate successions in East Antarctica have received limited systematic treatment through the 20th century. Described here are the East Antarctic camenellan tommotiids from the Shackleton Limestone in the Central Transantarctic Mountains and the Schneider Hills limestone in the Argentina Range. This material comes from both newly sampled collections and incompletely described material from older collections. The assemblage supports correlation to the Dailyatia odyssei Zone and Pararaia janeae Trilobite Zone of South Australia, with the newly examined specimens of Dailyatia decobruta from the Shackleton Limestone providing direct correlation to the Mernmerna Formation of the Ikara-Flinders Ranges and White Point Conglomerate of Kangaroo Island. These East Antarctic assemblages include five species referred to Dailyatia, in addition to an undetermined kennardiid species and fragments of the problematic Shetlandia multiplicata. The results further corroborate the notion that fossiliferous carbonate clasts found on King George Island were sourced from the same carbonate shelf as the Shackleton Limestone, with the taxon S. multiplicata found in both units. The Schneider Hills limestone in the Argentina Range has yielded sclerites of Dailyatia icari sp. nov., currently only known from this location. 
  •  
7.
  • Conway Morris, Simon, et al. (författare)
  • New palaeoscolecidan worms from the Lower Cambrian : Sirius Passet, Latham Shale and Kinzers Shale
  • 2010
  • Ingår i: Acta Palaeontologica Polonica. - : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 55:1, s. 141-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeoscolecidan worms are an important component of many Lower Palaeozoic marine assemblages, with notable occurrences in a number of Burgess Shale-type Fossil-Lagerstatten. In addition to material from the lower Cambrian Kinzers Formation and Latham Shale, we also describe two new palaeoscolecidan taxa from the lower Cambrian Sirius Passet Fossil-Lagerstatte of North Greenland: Chalazoscolex pharkus gen. et sp. nov and Xystoscolex boreogyrus gen. et sp. nov. These palaeoscolecidans appear to be the oldest known (Cambrian Series 2, Stage 3) soft-bodied examples, being somewhat older than the diverse assemblages from the Chengjiang Fossil-Lagerstatte of China. In the Sirius Passet taxa the body is composed of a spinose introvert (or proboscis), trunk with ornamentation that includes regions bearing cuticular ridges and sclerites, and a caudal zone with prominent circles of sclerites. The taxa are evidently quite closely related; generic differentiation is based on degree of trunk ornamentation, details of introvert structure and nature of the caudal region. The worms were probably infaunal or semi-epifaunal; gut contents suggest that at least X. boreogyrus may have preyed on the arthropod Isoxys. Comparison with other palaeoscolecidans is relatively straightforward in terms of comparable examples in other Burgess Shale-type occurrences, but is much more tenuous with respect to the important record of isolated sclerites. These finds from Greenland provide further evidence that palaeoscolecidans possessed a complex anterior introvert directly comparable to a number of priapulid-like taxa from other Burgess Shale-type assemblages. Although these palaeoscolecidans have been allied with the nematomorphs, molecular data in conjunction with our observations suggest that this hypothesis is untenable. Palaeoscolecidans and similar priapulid-like taxa are probably primitive cycloneuralians and as such may indicate the original bodyplan of this important group of ecdysozoans. In addition, we describe another sclerite-bearing fossil from the Sirius Passet Fossil-Lagerstatte that may be related to the cambroclaves.
  •  
8.
  • Conway Morris, Simon, et al. (författare)
  • The earliest annelids : Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland
  • 2008
  • Ingår i: Acta Palaeontologica Polonica. - 0567-7920 .- 1732-2421. ; 53:1, s. 137-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from the Phyllopod Bed of the Burgess Shale (Middle Cambrian) polychaete annelids are practically unknown from any of the Cambrian Lagerstdtten. This is surprising both because their diversity in the Burgess Shale is considerable, while to date the Chengjiang Lagerstatte which is equally impressive in terms of faunal diversity has no reliable records of any annelids. Here we describe, on the basis of about 40 specimens, Phragmochaeta canicularis gen. et sp. nov. from the Lower Cambrian Sirius Passet Lagerstatte of Peary Land, North Greenland. This makes it by far the oldest known polychaete, with a likely age of lower to middle Atdabanian, The body consists of approximately 20 segments, each bearing notochaetae and neurochaetae. The former appeared to have formed a felt-like covering on the dorsum, whilst the neurochaetae projected obliquely to the longitudinal axis. Apart from minor differences in chaetal size at either end there is no other tagmosis. Details of the head are obscure, and presence of palps, tentacles and eyes are conjectural. Jaws appear to have been absent. The gut was straight, and flanked by massive longitudinal musculature. P. canicularis was evidently benthic, propelling itself on the neurochaetae, with the dorsal neurochaetae conferring protection. Its stratigraphic position and generalized appearance are consistent with P. canicularis being primitive, but the phylogenetic relationships within the polychaetes remain problematic, principally because of paucity of relevant morphological information.
  •  
9.
  • Devaere, Lea, et al. (författare)
  • Oldest mickwitziid brachiopod from the Terreneuvian of southern France
  • 2015
  • Ingår i: Acta Palaeontologica Polonica. - : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 60:3, s. 755-768
  • Tidskriftsartikel (refereegranskat)abstract
    • Kerberellus marcouensis Devaere, Holmer, and Clausen gen. et sp. nov., originally described as Dictyonina? sp., from the Terreneuvian of northern Montagne Noire (France) is reinterpreted as the oldest relative to or member of mickwitziid-like stem-group brachiopods. Were extracted 170 partial to complete phosphatic internal moulds of two types of adult and one type of juvenile disarticulated valves, rarely externally coated with phosphates, from the calcareous Heraultia Member of the Marcou Formation. They correspond to microbially infested, ventribiconvex, inequivalved, bivalved shells. The ventral interarea is bisected by a triangular sinus. The shell, most probably dominantly organic in origin, is orthogonally pierced throughout its entire thickness by radially-aligned, smooth-walled, cylindrical to hourglass shaped canals except for the sub-apical planar field (interarea). The through-going canals of K. marcouensis are compared with brachiopods endopunctae and with canals of mickwitziid brachiopods. The absence of striations on K. marcouensis canal walls, typical of mickwitziids, implies that (i) the tubes could have been depleted of setae or; (ii) traces of the microvilli were not preserved on the tube wall (taphonomic bias) or, (iii) the tubes could have been associated with an outer epithelial follicle.
  •  
10.
  • Doguzhaeva, Larisa, et al. (författare)
  • A unique late Eocene coleoid cephalopod Mississaepia from Mississippi, USA: New data on cuttlebone structure, and their phylogenetic implications.
  • 2014
  • Ingår i: Acta Palaeontologica Polonica. - Poland : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences). - 0567-7920 .- 1732-2421. ; 59:1, s. 147-162
  • Tidskriftsartikel (refereegranskat)abstract
    • A new family, Mississaepiidae, from the Sepia–Spirula branch of decabrachian coleoids (Cephalopoda), is erected on the basis of the following, recently revealed, morphological, ultrastructural and chemical traits of the cuttlebone in the late Eocene Mississaepia, formerly referred to Belosaepiidae: (i) septa are semi−transparent, largely chitinous (as opposed to all other recorded cephalopods having non−transparent aragonitic septa); (ii) septa have a thin lamello−fibrillar nacreous covering (Sepia lacks nacre altogether, Spirula has fully lamello−fibrillar nacreous septa, ectochochleate cephalopods have columnar nacre in septa); (iii) a siphonal tube is present in early ontogeny (similar to siphonal tube development of the Danian Ceratisepia, and as opposed to complete lack of siphonal tube in Sepia and siphonal tube development through its entire ontogeny in Spirula); (iv) the lamello−fibrillar nacreous ultrastructure of septal necks (similar to septal necks in Spirula); (v) a sub−hemispherical protoconch (as opposed to the spherical protoconchs of the Danian Ceratisepia and Recent Spirula); (vi) conotheca has ventro−lateral extension in early ontogenetic stages (as opposed to Sepia that has no ventro−lateral extention of the conotheca and to Spirula that retains fully−developed phragmocone throughout its entire ontogeny). Chitinous composition of septa in Mississaepia is deduced from (i) their visual similarity to the chitinous semi−transparent flange of Sepia, (ii) angular and rounded outlines and straight compressive failures of the partial septa and mural parts of septa similar to mechanically−damaged dry rigid chitinous flange of Sepia or a gladius of squid, and (iii) organics consistent with [1]−chitin preserved in the shell. The family Mississaepiidae may represent a unknown lineage of the Sepia–Spirula branch of coleoids, a conotheca lacking a nacreous layer being a common trait of the shell of this branch. However, Mississaepiidae is placed with reservation in Sepiida because of similarities between their gross shell morphology (a cuttlebone type of shell) and inorganic−organic composition. In Mississaepia, as in Sepia, the shell contains up to 6% of nitrogen by weight; phosphatised sheets within the dorsal shield may have been originally organic, like similar structures in Sepia; accumulations of pyrite in peripheral zones of aragonitic spherulites and in−between the spherulites of the dorsal shield may also indicate additional locations of organics in the shell of living animal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 76

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy