SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0894 8755 "

Sökning: L773:0894 8755

  • Resultat 1-10 av 130
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta Navarro, Juan C., et al. (författare)
  • Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:3, s. 939-954
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-2049, a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 K and 0.84 K, respectively; as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a non-significant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the RCP4.5 emission scenario leads to a global and Arctic warming of 0.35 K and 0.94 K, respectively.The model yields a marked annual average northward shift in the inter-tropical convergence zone with decreasing aerosol emissions and subsequent warming of the northern hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres and there is no marked shift in the annual average position of the inter-tropical convergence zone. The strong reduction in aerosol emissions in MFR also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast and East Asia causing an increase in precipitation over a large part of this region.
  •  
2.
  • Aemisegger, Franziska, et al. (författare)
  • A climatology of strong large-scale ocean evaporation events. Part I : Identification, global distribution, and associated climate conditions
  • 2018
  • Ingår i: Journal of Climate. - 0894-8755. ; 31:18, s. 7287-7312
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an object-based, global climatology (1979-2014) of strong large-scale ocean evaporation (SLOE) and its associated climatic properties. SLOE is diagnosed using an ''atmospheric moisture uptake efficiency'' criterion related to the ratio of surface evaporation and integrated water vapor content in the near-surface atmosphere. The chosen Eulerian identification procedure focuses on events that strongly contribute to the available near-surface atmospheric humidity. SLOE is particularly frequent along the warm ocean western boundary currents, downstream of large continental areas, and at the sea ice edge in polar regions with frequent cold-air outbreaks. Furthermore, wind-driven SLOE occurs in regions with topographically enforced winds. On a global annual average, SLOE occurs only 6% of the time but explains 22% of total ocean evaporation. An analysis of the past history and fate of air parcels involved in cold season SLOE in the North Atlantic and south Indian Oceans shows that cold-air advection is the main mechanism that induces these events. Extratropical cyclones thereby play an important role in setting the necessary equatorward synoptic flow. Consequently, the interannual variability of SLOE associated with the North Atlantic Oscillation and the southern annular mode reveals a very high sensitivity of SLOE with respect to the location of the storm tracks. This study highlights the strong link between transient synoptic events and the spatiotemporal variability in ocean evaporation patterns, which cannot be deduced from thermodynamic steadystate and climate mean state considerations alone.
  •  
3.
  • Aemisegger, Franziska, et al. (författare)
  • A climatology of strong large-scale ocean evaporation events. Part II : Relevance for the deuterium excess signature of the evaporation flux
  • 2018
  • Ingår i: Journal of Climate. - 0894-8755. ; 31:18, s. 7313-7336
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper discusses the relevance of transient events of strong large-scale ocean evaporation (SLOE) for the deuteriumexcess of marine boundary layer vapor d using a theoretical framework that invokes the closure assumption. We argue that during SLOE events, d is essentially determined by the evaporation flux signature. Distinct high d during SLOE with global-mean values in the range of 12‰-23‰ depending on the nonequilibrium fractionation factor αk result from the large air-sea humidity gradients reflected in low relative humidity with respect to sea surface temperature (hs 5 53% ± 9%) that characterize these events. Extratropical cyclones are highlighted as an important driver for the variability of d. On the one hand, they are themselves associated with high hs and low d, especially in areas of cloud formation and precipitation in the warm sector. On the other hand, cyclones are the main driver inducing SLOE events with high d in regions of cold-air advection upstream of their path. The sensitivity of d to its direct climate controls (hs and SST) is analyzed during SLOE for different αk formulations and found to be coherent with d-hs and d-SST slopes determined from available observations. The d-hs relationship exhibits a robust negative correlation as opposed to the d-SST relationship, which shows regional and time-scale-dependent variations in strength and sign that are induced by indirect hs-SST cross-correlation effects. The dynamical features involved in SLOE generation appear to exert a key control on the moisture source properties relevant for d in the extratropics.
  •  
4.
  • Agarwal, Sahil, et al. (författare)
  • The Statistical Properties of Sea Ice Velocity Fields
  • 2017
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 30:13, s. 4873-4881
  • Tidskriftsartikel (refereegranskat)abstract
    • By arguing that the surface pressure field over the Arctic Ocean can be treated as an isotropic, stationary, homogeneous, Gaussian random field, Thorndike estimated a number of covariance functions from two years of data (1979 and 1980). Given the active interest in changes of general circulation quantities and indices in the polar regions during the recent few decades, the spatial correlations in sea ice velocity fields are of particular interest. It is thus natural to ask, How persistent are these correlations?'' To this end, a multifractal stochastic treatment is developed to analyze observed Arctic sea ice velocity fields from satellites and buoys for the period 1978-2015. Since it was previously found that the Arctic equivalent ice extent (EIE) has a white noise structure on annual to biannual time scales, the connection between EIE and ice motion is assessed. The long-term stationarity of the spatial correlation structure of the velocity fields and the robustness of their white noise structure on multiple time scales is demonstrated; these factors (i) combine to explain the white noise characteristics of the EIE on annual to biannual time scales and (ii) explain why the fluctuations in the ice velocity are proportional to fluctuations in the geostrophic winds on time scales of days to months. Moreover, it is shown that the statistical structure of these two quantities is commensurate from days to years, which may be related to the increasing prevalence of free drift in the ice pack.
  •  
5.
  • Azorin-Molina, C., et al. (författare)
  • A Decline of Observed Daily Peak Wind Gusts with Distinct Seasonality in Australia, 1941-2016
  • 2021
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 34:8, s. 3103-3127
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind gusts represent one of the main natural hazards due to their increasing socioeconomic and environmental impacts on, for example, human safety, maritime-terrestrial-aviation activities, engineering and insurance applications, and energy production. However, the existing scientific studies focused on observed wind gusts are relatively few compared to those on mean wind speed. In Australia, previous studies found a slowdown of near-surface mean wind speed, termed "stilling," but a lack of knowledge on the multidecadal variability and trends in the magnitude (wind speed maxima) and frequency (exceeding the 90th percentile) of wind gusts exists. A new homogenized daily peak wind gusts (DPWG) dataset containing 548 time series across Australia for 1941-2016 is analyzed to determine long-term trends in wind gusts. Here we show that both the magnitude and frequency of DPWG declined across much of the continent, with a distinct seasonality: negative trends in summer-spring-autumn and weak negative or nontrending (even positive) trends in winter. We demonstrate that ocean-atmosphere oscillations such as the Indian Ocean dipole and the southern annular mode partly modulate decadal-scale variations of DPWG. The long-term declining trend of DPWG is consistent with the "stilling" phenomenon, suggesting that global warming may have reduced Australian wind gusts.
  •  
6.
  • Beer, Christian, et al. (författare)
  • Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land-Atmosphere CO2 Fluxes
  • 2014
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 27:13, s. 4815-4834
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal variability of meteorological variables and extreme weather events is projected to increase in many regions of the world during the next century. Artificial experiments using process-oriented terrestrial ecosystem models make it possible to isolate effects of temporal variability from effects of gradual climate change on terrestrial ecosystem functions and the system state. Such factorial experiments require two long-term climate datasets: 1) a control dataset that represents observed and projected climate and 2) a dataset with the same long-term mean as the control dataset but with altered short-term variability. Using a bias correction method, various climate datasets spanning different periods are harmonized and then combined with the control dataset with consistent time series for Europe during 1901-2100. Then, parameters of a distribution transformation function are estimated for individual meteorological variables to derive the second climate dataset, which has similar long-term means but reduced temporal variability. The transformation conserves the number of rainy days within a month and the shape of the daily meteorological data distributions, which is important to ensure that, for example, drought duration does not modify the suitability of localized vegetation type to precipitation regimes. The median absolute difference between daily data of both datasets is 5% to 20%. On average, decadal extreme values are reduced by 2% to 35%. Driving a terrestrial ecosystem model with both climate datasets shows a general higher gross primary production under reduced temporal climate variability. This effect of climate variability on productivity demonstrates the potential of the climate datasets for studying various effects of temporal variability on ecosystem state and functions over large domains.
  •  
7.
  • Bender, Frida A. -M., et al. (författare)
  • Evaluation of Hemispheric Asymmetries in Marine Cloud Radiative Properties
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:11, s. 4131-4147
  • Tidskriftsartikel (refereegranskat)abstract
    • The hemispheric symmetry of albedo and its contributing factors in satellite observations and global climate models is evaluated. The analysis is performed on the annual mean time scale, on which a bimodality in the joint distribution of albedo and cloud fraction is evident, resulting from tropical and subtropical clouds and midlatitude clouds, respectively. Hemispheric albedo symmetry is not found in individual ocean-only latitude bands; comparing the Northern and Southern Hemisphere (NH and SH), regional mean albedo is higher in the NH tropics and lower in the NH subtropics and midlatitudes than in the SH counterparts. This follows the hemispheric asymmetry of cloud fraction. In midlatitudes and tropics the hemispheric asymmetry in cloud albedo also contributes to the asymmetry in total albedo, whereas in the subtropics the cloud albedo is more hemispherically symmetric. According to the observations, cloud contributions to compensation for higher clear-sky albedo in the NH come primarily from cloud albedo in midlatitudes and cloud amount in the subtropics. Current-generation climate models diverge in their representation of these relationships, but common features of the model-data comparison include weaker-than-observed asymmetry in cloud fraction and cloud albedo in the tropics, weaker or reversed cloud fraction asymmetry in the subtropics, and agreement with observed cloud albedo asymmetry in the midlatitudes. Models on average reproduce the NH-SH asymmetry in total albedo over the 60 degrees S-60 degrees N ocean but show higher occurrence of brighter clouds in the SH compared to observations. The albedo bias in both hemispheres is reinforced by overestimated clear-sky albedo in the models.
  •  
8.
  • Bender, Frida, et al. (författare)
  • Factors controlling cloud albedo in marine subtropical stratocumulus regions in climate models and satellite observations
  • 2016
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 29:10, s. 3559-3587
  • Tidskriftsartikel (refereegranskat)abstract
    • This study focuses on the radiative properties of five subtropical marine stratocumulus cloud regions, on monthly mean scale. Through examination of the relation between total albedo and cloud fraction, and its variability and relation to other parameters, some of the factors controlling the reflectivity, or albedo, of the clouds in these regions are investigated. It is found that the main part of the variability in albedo at a given cloud fraction can be related to temporal, rather than spatial variability, indicating spatial homogeneity in cloud radiative properties in the studied regions. This is seen most clearly in satellite observations, but also in an ensemble of climate models. Further comparison between satellite data and output from climate models shows that there is good agreement with respect to the role of liquid water path, the parameter that can be assumed to be the primary source of variability in cloud reflectivity for a given cloud fraction. On the other hand, the influence of aerosol loading on cloud albedo differs between models and observations. The cloud-albedo effect, or cloud brightening caused by aerosol through its coupling to cloud droplet number concentration and droplet size, is found not to dominate in the satellite observations on monthly mean scale, as it appears to do on this scale in the climate models. The disagreement between models and observations is particularly strong in regions with frequent occurrence of absorbing aerosols above clouds, where satellite data contrary to the climate models indicate a scene darkening with increasing aerosol loading.
  •  
9.
  • Björk, Göran, 1956, et al. (författare)
  • The Sensitivity of the Arctic Ocean Sea Ice Thickness and Its Dependence on the Surface Albedo Parameterization
  • 2013
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 26:4, s. 1355-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the response of sea ice thickness to changes in the external forcing is investigated and particularly how this response depends on the surface albedo formulation by means of a one-dimensional coupled ocean-ice-atmosphere model. The main focus is on the thickness response to the atmospheric heat advection F-wall, solar radiation F-SW, and amount of snow precipitation S-prec. Different albedo parameterization schemes [ECHAM5, CSIRO, and Community Climate System Model, version 3 (CCSM3)] representing albedos commonly used in global climate models are compared together with more simplified schemes. Using different albedo schemes with the same external forcing produces large differences in ice thickness. The ice thickness response is similar for all realistic albedo schemes with a nearly linear decrease with increasing F-wall in the perennial ice regime and with a steplike transition into seasonal ice when F-wall exceeds a certain threshold. This transition occurs at an annual-mean ice thickness of 1.7-2.0 m. Latitudinal differences in solar insolation generally leads to increasing ice thickness toward the North Pole. The snow response varies significantly depending on which albedo scheme is used. The ECHAM5 scheme yields thinner ice with S-prec, the CSIRO scheme gives ice thickness nearly independent of S-prec, and with the CCSM3 scheme the ice thickness decreases with S-prec. A general result is that the modeled ice cover is rather sensitive to positive perturbations of the external heat supply when it is close to the transition such that just a small increase of, for example, F-wall can force the ice cover into the seasonal regime.
  •  
10.
  • Blanco, Joaquin, 1985-, et al. (författare)
  • A Cloud-Controlling Factor Perspective on the Hemispheric Asymmetry of Extratropical Cloud Albedo
  • 2023
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 36:6, s. 1793-1804
  • Tidskriftsartikel (refereegranskat)abstract
    • The Northern and Southern Hemispheres reflect on average almost equal amounts of sunlight due to compensating hemispheric asymmetries in clear-sky and cloud albedo. Recent work indicates that the cloud albedo asymmetry is largely due to clouds in extratropical oceanic regions. Here, we investigate the proximate causes of this extratropical cloud albedo asymmetry using a cloud-controlling factor (CCF) approach. We develop a simple index that measures the skill of CCFs, either individually or in combination, in predicting the asymmetry. The index captures the contribution to the asymmetry due to interhemispheric differences in the probability distribution function of daily CCF values. Cloud albedo is quantified using daily MODIS satellite retrievals, and is related to range of CCFs derived from the ERA5 product. We find that sea surface temperature is the CCF that individually explains the largest fraction of the asymmetry, followed by surface wind. The asymmetry is predominantly due to low clouds, and our results are consistent with prior local-scale modeling work showing that marine boundary layer clouds become thicker and more extensive as surface wind increases and surface temperature cools. The asymmetry is consistent with large-scale control of storm-track intensity and surface winds by meridional temperature gradients: persistently cold and windy conditions in the Southern Hemisphere keep cloud albedo high year-round. Our results have important implications for global-scale cloud feedbacks and contribute to efforts to develop a theory for planetary albedo and its symmetry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 130
Typ av publikation
tidskriftsartikel (128)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (128)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Chen, Deliang, 1961 (23)
Caballero, Rodrigo (8)
Svensson, Gunilla (7)
Messori, Gabriele (6)
Karlsson, Johannes (6)
Charpentier Ljungqvi ... (5)
visa fler...
Zhang, Qiong (5)
Döös, Kristofer (5)
Brandefelt, Jenny (5)
Azorin-Molina, César (4)
Linderholm, Hans W., ... (4)
Tjernström, Michael (4)
Papritz, Lukas (4)
Krusic, Paul J. (4)
Engström, Anders (4)
Sedlar, Joseph (4)
McVicar, T. R. (3)
Shupe, Matthew D. (3)
Ekman, Annica M. L. (3)
Heuzé, Céline, 1988 (3)
Mauritsen, Thorsten (3)
Son, S. W. (3)
Minola, Lorenzo (3)
Charpentier Ljungqvi ... (3)
Achtert, Peggy (2)
Brooks, Ian M. (2)
Acosta Navarro, Juan ... (2)
Pausata, Francesco S ... (2)
Seland, Øyvind (2)
Nilsson, Johan (2)
Wu, J (2)
Aemisegger, Franzisk ... (2)
Wettlaufer, John S. (2)
Zorita, Eduardo (2)
Nycander, Jonas (2)
Chen, Wen (2)
Wang, Bin (2)
Büntgen, Ulf (2)
Esper, Jan (2)
Rutgersson, Anna (2)
Zhou, W. (2)
Shen, Cheng (2)
Liu, Jian (2)
Guijarro, J. A. (2)
Folland, Chris K. (2)
Bender, Frida A.-M. (2)
Charlson, Robert J. (2)
Karlsson, Bodil (2)
Prytherch, John (2)
Tegel, Willy (2)
visa färre...
Lärosäte
Stockholms universitet (75)
Göteborgs universitet (38)
Uppsala universitet (9)
Kungliga Tekniska Högskolan (8)
Lunds universitet (8)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (127)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (120)
Teknik (3)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy