SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1000 0240 "

Sökning: L773:1000 0240

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ni, Jingwen, et al. (författare)
  • 天山典型流域水文多要素模拟与气候变化影响预估
  • 2023
  • Ingår i: Journal of Glaciology and Geocryology. - 1000-0240. ; 45:6, s. 1875-1886
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of varied topography and landscape heterogeneity,Tianshan Mountain has extremely complex hydrological processes. Considering that the climate change poses a great threat to the water security,it’s necessary to simulate the change of water elements quantitatively and systematically along with elevation. In this study,we applied the modified FLEXG-Δh model to four classic river basins in Tianshan Mountain in consideration of glacier area changes. The results suggested that:(1)FLEXG-Δh model has high simulation accuracy for the historical runoff process because the average Kling-Gupta coefficient(IKGE)in calibration is 0. 75 and IKGE in validation is 0. 60. (2)Precipitation increases along with elevation while runoff and evaporation increase first but then decreased,with the maximum values at 4 000 m and 2 000 m respectively. The height zone with the greatest runoff is mainly affected by the glacier cover,while it is the distribution of forest for the greatest evaporation. (3)By 2100,the glaciers at low altitudes will melt significantly,while there will be a little melting above 4 500 m. Under SSP1-RCP2. 6 and SSP5-RCP8. 5 scenarios,145 and 222 glaciers will completely melt and the volume of glaciers will decrease 1. 81×104 km3(54% of the existing glaciers)and 2. 44×104 km3(73% of the existing glaciers),respectively. In the SSP5-RCP8. 5 scenario,the rise of temperature will increase the evap⁃ oration but lead to the fact that the runoff depth will decrease 0. 16~1. 40 mm·a-1 below 4 000 m and increase 0. 20~0. 67 mm·a-1 above 4 000 m ,causing the height of peak value will go up by about 500 m. Under SSP1-RCP2. 6 scenario,there will be few obvious changes. This study presented the vertical zonal law of hydrology and vegetation,and predicted the impact of global changes on the Tianshan Mountains,which provided theoreti⁃ cal support for water utilization and sustainable development.
  •  
3.
  • Chen, Tao, et al. (författare)
  • Comprehensive applicability evaluation of multi-source snow depth datasets over the Tibetan Plateau
  • 2022
  • Ingår i: Journal of Glaciology and Geocryology. - 1000-0240. ; 44:3, s. 795-809
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow cover over the Tibetan Plateau has an important impact on the regional climate and water cycle. At present, the existing snow cover datasets have great uncertainty across this region, so the applicability assessment is indispensable in order to make best use of the advantages and bypass the disadvantages. In this study, a comprehensive quantitative evaluation of multiple variables and multiple evaluation indicators was carried out for three snow depth datasets over the Tibetan Plateau against the meteorological station observations(OBS). The three snow depth datasets include one passive microwave remote sensing dataset(CHE)and two reanalysis datasets(ERA5-Land and MERRA2). The variables are the annual mean snow depth, the annual maximum snow depth, and the annual snow cover days. In addition, the evaluation indicators are seasonal cycle, climatology, maximum value, standard deviation, interannual variation, and trend. A rank score(RS)value of 0~1 is computed for each evaluation indicator of each variable, the larger value of RS indicate relatively better performance of a snow depth dataset. Assessment results imply that, comprehensively considered, MERRA2 exhibits best agreement with OBS, followed by ERA5-Land, and finally CHE. Evaluate based on the RS of each variable, MERRA2 shows better performance on annual maximum snow depth and annual snow cover days, CHE shows better performance on annual mean snow depth. Evaluate based on the RS of each evaluation indicator, CHE shows advantages in describing trend, ERA5-Land exhibits better agreement with OBS on interannual variation, and MERRA2 show better performance on the rest of the indicators including seasonal cycle, climatology, maximum value and standard deviation. The RS statistics in terms of regional average and spatial distribution show that CHE performs better in the former, and ERA5-Land performs better in the latter. On the other hand, there are obvious deficiencies in all three snow depth datasets. MERRA2 has insufficient ability to characterize the interdecadal variation in snow cover, and its qualitative results for trend in snow cover is inconsistent with OBS, the reason for the first deficiency needs to be further studied and the second deficiency may be mainly related to its simulation capability to precipitation trend. ERA5-Land significantly overestimates the snow cover over the Tibetan Plateau, this may be mostly related to its data assimilation scheme. CHE has poor ability to characterize the spatial distribution of snow cover, coarse spatial resolution of passive microwave remote sensing may be the main reason. The conclusions are only applicable to the central and eastern part of the Tibetan Plateau due to the scarcity of meteorological station in west part of the Tibetan Plateau. Based on the remote sensing and reanalysis data, there is great uncertainty in the trend of snow cover in the western part of the Tibetan Plateau. These systematic classification evaluation of the three representative snow depth datasets provides information on data selection and data refinement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Chen, Deliang, 1961 (2)
Zhang, R. (1)
Chen, J. (1)
Zhang, Wenxin (1)
Kang, S (1)
Chen, Tao (1)
visa fler...
Cai, Z. (1)
You, Q. (1)
Gao, Ge (1)
Bian, Duo (1)
Gao, Hongkai (1)
Feng, Zijing (1)
Ni, Jingwen (1)
Qin, Yanhua (1)
He, Tianhao (1)
Yong, Leilei (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Lunds universitet (1)
Språk
Kinesiska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy