SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1044 1549 OR L773:1535 4989 "

Sökning: L773:1044 1549 OR L773:1535 4989

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altraja, Alan, et al. (författare)
  • Expression of laminins in the airways in various types of asthmatic patients: A morphometric study
  • 1996
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549 .- 1535-4989. ; 15:4, s. 482-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminins (Ln) are crucial in airway morphogenesis. Because they are able to interact with inflammatory cells, they are likely to participate in inflammation accompanied by airway structural remodeling in asthma. Taking biopsies and using immunohistochemistry and quantitative image analysis, we characterized the distribution of Ln chains alpha 1, alpha 2, and beta 2 in the bronchial mucosa of patients with seasonal (n = 17), early occupational (n = 8), and chronic asthma (n = 16) for comparison with that of normal controls (n = 8). In all asthmatic patients, both Ln chains alpha 1 and beta 2 were confined to the superficial margin of the basement membrane (BM), blood vessels, and smooth muscle. The thickness of Ln beta 2 expression in BM was significantly greater in patients with chronic (1.9 +/- 0.1 microns; P < 0.001) and occupational asthma (1.7 +/- 0.1 microns; P < 0.05) than in controls (0.4 +/- 0.3 microns). Only in patients with occupational asthma was the thickness of the Ln alpha 1 layer (2.3 +/- 0.2 microns; mean +/- SEM) significantly different from that in controls (1.4 +/- 0.5 microns; P < 0.05). There was no immunoreactivity for the Ln alpha 2 chain in controls or patients with mild asthma, but in clinically severe chronic asthma we found a discontinuous staining along the epithelial margin of the BM. Since Ln chains alpha 2 and beta 2 appear to function only during morphogenesis, increased expression of these Ln chains in adult asthma patients suggests accelerated tissue turnover in the airways, possibly as a result of airway inflammation in asthma.
  •  
2.
  •  
3.
  • Chambers, R C, et al. (författare)
  • Cadmium inhibits proteoglycan and procollagen production by cultured human lung fibroblasts
  • 1998
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - : American Thoracic Society. - 1044-1549 .- 1535-4989. ; 19:3, s. 498-506
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic inhalation of cadmium at the workplace or in cigarette smoke is associated with emphysema, a disease characterized by extensive disruption of lung connective tissue. We have previously shown that cadmium, at noncytotoxic doses, inhibits fibroblast procollagen production in vitro, with maximal inhibitory effects of 69 +/- 6% (P < 0.01) at 30 µM cadmium chloride (CdCl2). In this paper we show that at similar doses, cadmium also inhibits proteoglycan synthesis, with values reduced by between 36 +/- 4% (P < 0.01) and 42 +/- 6% (P < 0.01) for proteoglycans secreted into the culture media and associated with the cell layer, respectively. The greatest inhibition was obtained for the major matrix-associated proteoglycans, versican, decorin, and the large heparan sulfate proteoglycans, with synthesis values reduced by between 60 and 70%. Biglycan and other heparan sulfate proteoglycans were also affected, with synthesis values reduced by between 25 and 45%. In contrast, total protein synthesis was unaffected. Furthermore, effects of cadmium at the protein level were mirrored by reduction in messenger RNA levels for alpha1(I) procollagen, versican, and decorin. These data support the hypothesis that cadmium may play an important role in the pathogenesis of emphysema associated with chronic inhalation of cadmium fumes by inhibiting the production of connective tissue proteins.
  •  
4.
  • Eriksson Ström, Jonas, et al. (författare)
  • Chronic obstructive pulmonary disease is associated with epigenome-wide differential methylation in BAL lung cells
  • 2022
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - : American Thoracic Society. - 1044-1549 .- 1535-4989. ; 66:6, s. 638-647
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on BAL cells. Bronchoscopies were performed in 18 subjects with COPD and 15 control subjects (ex- and current smokers). DNA methylation was measured using the Illumina MethylationEPIC BeadChip Kit, covering more than 850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, 2) accelerated aging using Horvath's epigenetic clock, 3) correlation with gene expression, and 4) colocalization with genetic variation. We found 1,155 Bonferroni-significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between DNA methylation and chronological age but not between COPD and accelerated aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were colocalized with COPD-associated SNPs. To the best of our knowledge, this is the first epigenome-wide association study of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly affect expression. Almost half of DMPs were colocated with SNPs identified in previous genome-wide association studies of COPD, suggesting joint genetic and epigenetic pathways related to disease.
  •  
5.
  •  
6.
  • Forteza, Rosanna, et al. (författare)
  • TSG-6 Potentiates the Antitissue Kallikrein Activity of Inter-{alpha}-inhibitor through Bikunin Release
  • 2007
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549 .- 1535-4989. ; 36:1, s. 20-31
  • Tidskriftsartikel (refereegranskat)abstract
    • TSG-6 (the protein product of TNF-stimulated gene-6), an inflammation-associated protein, forms covalent complexes with heavy chains (HCs) from inter-alpha-inhibitor and pre-alpha-inhibitor and associates noncovalently with their common bikunin chain, potentiating the antiplasmin activity of this serine protease inhibitor. We show that TSG-6 and TSG-6(.)HC complexes are present in bronchoalveolar lavage fluid from patients with asthma and increase after allergen challenge. Immunodetection demonstrated elevated TSG-6 in the airway tissue and secretions of smokers. Experiments conducted in vitro with purified components revealed that bikunin.HC complexes (byproducts of TSG-6.HC formation) release bikunin. Immunoprecipitation revealed that bikunin accounts for a significant proportion of tissue kallikrein inhibition in bronchoalveolar lavage after allergen challenge but not in baseline conditions, confirming that bikunin in its free state, but not when associated with HCs, is a relevant protease inhibitor in airway secretions. In primary cultures of differentiated human airway epithelial and submucosal gland cells, TSG-6 is induced by TNF-alpha and IL-1 beta, which suggests that these cells are responsible for TSG-6 release in vivo. Bikunin and HC3 (i.e., pre-alpha-inhibitor) were also induced by TNF-alpha in primary cultures. Our results suggest that TSG-6 may play an important protective role in bronchial epithelium by increasing the antiprotease screen on the airway lumen.
  •  
7.
  • Graham, Brian B., et al. (författare)
  • Protective Role of IL-6 in Vascular Remodeling in Schistosoma Pulmonary Hypertension
  • 2013
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549 .- 1535-4989. ; 49:6, s. 951-959
  • Tidskriftsartikel (refereegranskat)abstract
    • Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease via whole-lung transcriptome analysis. Wild-type mice were experimentally exposed to Schistosoma mansoni ova by intraperitoneal sensitization followed by tail-vein augmentation, and the phenotype was assessed by right ventricular catheterization and tissue histology, as well as RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, and RNA sequencing was analyzed according to two bioinformatics methods. Functional testing of the candidate IL-6 pathway was determined using IL-6 knockout mice and the signal transducers and activators of transcription protein-3 (STAT3) inhibitor S3I-201. Wild-type mice exposed to S. mansoni demonstrated increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole-lung transcriptome analysis determined that the IL-6-STAT3-nuclear factor of activated T cells c2(NFATc2) pathway was up-regulated, as confirmed by PCR and the immunostaining of lung tissue from S. mansoni-exposed mice and patients who died of the disease. Mice lacking IL-6 or treated with S3I-201 developed pulmonary hypertension, associated with significant intima remodeling after exposure to S. mansoni. Whole-lung transcriptome analysis identified the up-regulation of the IL-6-STAT3-NFATc2 pathway, and IL-6 signaling was found to be protective against Schistosoma-induced intimal remodeling.
  •  
8.
  •  
9.
  • Kilsgård, Ola, et al. (författare)
  • Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities.
  • 2012
  • Ingår i: American journal of respiratory cell and molecular biology. - 1535-4989 .- 1044-1549. ; 46:2, s. 240-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial colonization of the lower respiratory tract is frequently seen in chronic obstructive pulmonary disease (COPD), and may cause exacerbations leading to disease progression. Antimicrobial peptides comprise an important part of innate lung immunity, and not least the cathelicidin human cationic antimicrobial protein-18/LL-37. Peptidylarginine deiminases (PADIs) post-translationally modify proteins by converting cationic peptidylarginine residues to neutral peptidylcitrulline. An increased presence of PADI2 and citrullinated proteins was demonstrated in the lungs of smokers. In this study, preformed PADI4, stored in granulocytes and extracellularly in the lumina of bronchi, was found in lung tissue of individuals suffering from COPD. In vitro, recombinant human PADI2 and PADI4 both caused a time- and dose-dependent citrullination of LL-37. The citrullination resulted in impaired antibacterial activity against Staphylococcus aureus, Streptococcus pneumoniae, and nontypable Haemophilus influenzae, but less so against Pseudomonas aeruginosa. Using artificial lipid bilayers, we observed discrete differences when comparing the disrupting activity of native and citrullinated LL-37, suggesting that differences in cell wall composition are important during interactions with whole bacteria. Furthermore, citrullinated LL-37 showed higher chemotactic activity against mononuclear leukocytes than did native LL-37, but was less efficient at neutralizing lipolysaccharide, and also in converting apoptotic neutrophils into a state of secondary necrosis. In addition, citrullinated LL-37 was more prone to degradation by proteases, whereas the V8 endopetidase of S. aureus cleaved the modified peptide at additional sites, compared with native LL-37. Together, these findings demonstrate novel mechanisms whereby the inflammation-dependent deiminases PADI2 and PADI4 can alter the activites of antibacterial polypeptides, affecting the course of inflammatory disorders such as COPD.
  •  
10.
  • Porra, Liisa, et al. (författare)
  • Synchrotron Imaging Shows Effect of Ventilator Settings on Intrabreath Cyclic Changes in Pulmonary Blood Volume
  • 2017
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - : AMER THORACIC SOC. - 1044-1549 .- 1535-4989. ; 57:4, s. 459-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the importance of dynamic changes in the regional distributions of gas and blood during the breathing cycle for lung function in the mechanically ventilated patient, no quantitative data on such cyclic changes are currently available. We used a novel gated synchrotron computed tomography imaging to quantitatively image regional lung gas volume (Vg), tissue density, and blood volume (Vb) in six anesthetized, paralyzed, and mechanically ventilated rabbits with normal lungs. Images were repeatedly collected during ventilation and steady-state inhalation of 50% xenon, or iodine infusion. Data were acquired in a dependent and nondependent image level, at zero end-expiratory pressure (ZEEP) and 9 cm H2O (positive end-expiratory pressure), and a tidal volume (V-T) of 6ml/kg(V(T)1) or 9ml/kg(V(T)2) at an Inspiratory: Expiratory ratio of 0.5 or 1.7 by applying an end-inspiratory pause. A video showing dynamic decreases in Vb during inspiration is presented. Vb decreased with positive end-expiratory pressure (P = 0.006; P = 0.036 versus V(T)1-ZEEP and V(T)2-ZEEP, respectively), and showed larger oscillations at the dependent image level, whereas a 45% increase in VT did not have a significant effect. End-inspiratory Vb minima were reduced by an end-inspiratory pause (P = 0.042, P = 0.006 at nondependent and dependent levels, respectively). Normalized regional Vg:Vb ratio increased upon inspiration. Our data demonstrate, for the first time, within-tidal cyclic variations in regional pulmonary Vb. The quantitative matching of regional Vg and Vb improved upon inspiration under ZEEP. Further study is underway to determine whether these phenomena affect intratidal gas exchange.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy