SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 2516 OR L773:1439 1104 "

Sökning: L773:1354 2516 OR L773:1439 1104

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Idris, Mohammed M., et al. (författare)
  • Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis
  • 2013
  • Ingår i: Invertebrate Neuroscience. - : Springer Science and Business Media LLC. - 1354-2516 .- 1439-1104. ; 13, s. 151-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Although mutations in the huntingtin gene (HTT) due to poly-Q expansion cause neuropathology in humans (Huntington's disease; HD), the normal function(s) of the gene and its protein (HTT) remain obscure. With new information from recently sequenced invertebrate genomes, the study of new animal models opens the possibility of a better understanding of HTT function and its evolution. To these ends, we studied huntingtin expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and prior to metamorphosis. A single form of huntingtin protein is present until the early larval stages, at which time two different mass proteins become evident in the metamorphically competent larva. An antibody against Ci-HTT labeled 50 cells in the trunk mesenchyme regions in pre-hatching and hatched larvae and probably represents the distribution of the light form of the protein. Dual labeling with anti-Ci-HTT and anti-aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression of Ci-HTT RNA by a morpholino oligonucleotide reduced the number and apparent mobility of Ci-HTT positive cells. In Ciona, HTT expression has a dynamic temporal and spatial expression pattern that in ontogeny precedes metamorphosis. Although our results may reflect a derived function for the protein in pre- and post-metamorphic events in Ciona, we also note that as in vertebrates, there is evidence for multiple differential temporal expression, indicating that this protein probably has multiple roles in ontogeny and cell migration. © 2013 Springer-Verlag Berlin Heidelberg.
  •  
2.
  • Nässel, Dick (författare)
  • Neuropeptide signaling near and far : how localized and timed is the action of neuropeptides in brain circuits?
  • 2009
  • Ingår i: Invertebrate neuroscience. - : Springer Science and Business Media LLC. - 1439-1104 .- 1354-2516. ; 9, s. 57-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptide signaling is functionally very diverse and one and the same neuropeptide may act as a circulating neurohormone, as a locally released neuromodulator or even as a cotransmitter of classical fast-acting neurotransmitters. Thus, neuropeptides are produced by a huge variety of neuron types in different parts of the nervous system. Within the central nervous system (CNS) there are numerous types of peptidergic interneurons, some with strictly localized and patterned branching morphologies, others with widespread and diffuse arborizations. From morphology alone it is often difficult to predict the sphere of influence of a peptidergic interneuron, especially since it has been shown that neuropeptides can diffuse over tens of micrometers within neuropils, and that peptides probably are released exclusively in perisynaptic (or non-synaptic) regions. This review addresses some questions related to peptidergic signaling in the insect CNS. How diverse are the spatial relations between peptidergic neurons and their target neurons and what determines the sphere of functional influence? At one extreme there is volume transmission and at the other targeted cotransmission at synapses. Also temporal aspects of peptidergic signaling are of interest: how transient are peptidergic messages? Factors important for these spatial and temporal aspects of peptidergic signaling are proximity between release sites and cognate receptors, distribution of peptidase activity that can terminate peptide action and colocalization of other neuroactive compounds in the presynaptic peptidergic neuron (and corresponding receptors in target neurons). Other factors such as expression of different channel types, receptor inactivation mechanisms and second messenger systems probably also contribute to the diversity in temporal properties of peptide signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Thorndyke, Michael C ... (1)
Nässel, Dick (1)
Idris, Mohammed M. (1)
Brown, Euan R. (1)
Lärosäte
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy