SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1355 6215 OR L773:1369 1600 "

Sökning: L773:1355 6215 OR L773:1369 1600

  • Resultat 1-10 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adermark, Louise, 1974, et al. (författare)
  • Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.
  • 2011
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 16:1, s. 43-54
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+)/K(+)/2Cl(-) cotransporter blocker furosemide (1 mM), Na(+)/K(+)-ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl(2) (50 microM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and beta-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 microM) or furosemide (100 microM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.
  •  
2.
  • Hartmann, S., et al. (författare)
  • Phosphatidylethanol as a sensitive and specific biomarker-comparison with gamma-glutamyl transpeptidase, mean corpuscular volume and carbohydrate-deficient transferrin
  • 2007
  • Ingår i: Addiction Biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 12:1, s. 81-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphatidylethanol (PEth), a direct ethanol metabolite, is detectable in blood for more than 2 weeks after sustained ethanol intake. Our aim was to assess the usefulness of PEth [comparing sensitivity, specificity and the area under the curve (AUC)] as compared with carbohydrate-deficient transferrin (CDT), gamma-glutamyl transpeptidase (GGT) and mean corpuscular volume (MCV), calculating the results from sober patients against those from alcohol-dependent patients during withdrawal. Fifty-six alcohol-dependent patients (ICD-10 F 10.25) in detoxification, age 43 years, GGT 81 U/l, MCV 96.4 fl, %CDT 4.2, 1400 g ethanol intake in the last 7 days (median), were included in the study. Over the time of 1 year, 52 samples from 35 sober forensic psychiatric addicted in-patients [age 34 years, GGT 16 U/l, MCV 91 fl, CDT 0.5 (median)] in a closed ward were drawn and used for comparison . PEth was measured in heparinized whole blood with a high-performance liquid chromatography method. GGT, MCV and %CDT were measured using routine methods. A receiver operating characteristic curve analysis was carried out, with 'current drinking status' (sober/drinking) as the state variable and PEth, MCV, GGT and CDT as test variables. The resulting AUC was 0.974 (P < 0.0001, confidence interval 0.932-1.016) for PEth. At a cut-off of 0.36 mu mol/l, the sensitivity was 94.5% and specificity 100%. The AUC for CDT, GGT and MCV were 0.931, 0.894 and 0.883, respectively. A significant Spearman's rank correlation was found between PEth and GGT (r = 0.739), CDT (r = 0.643), MVC (r = 0.639) and grams of ethanol consumed in the last 7 days (r = 0.802). Our data suggest that PEth has potential to be a sensitive and specific biomarker, having been found in previous studies to indicate longer lasting intake of higher amounts of alcohol.
  •  
3.
  • Wurst, Friedrich Martin, et al. (författare)
  • Phosphatidylethanol: normalization during detoxification, gender aspects and correlation with other biomarkers and self-reports
  • 2010
  • Ingår i: Addiction Biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 15:1, s. 88-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphatidylethanol (PEth) is a direct ethanol metabolite, and has recently attracted attention as biomarker of ethanol intake. The aims of the current study are: (1) to characterize the normalization time of PEth in larger samples than previously conducted; (2) to elucidate potential gender differences; and (3) to report the correlation of PEth with other biomarkers and self-reported alcohol consumption. Fifty-seven alcohol-dependent patients (ICD 10 F 10.25; 9 females, 48 males) entering medical detoxification at three study sites were enrolled. The study sample was comprised of 48 males and 9 females, with mean age 43.5. Mean gamma glutamyl transpeptidase (GGT) was 209.61 U/l, average mean corpuscular volume (MCV) was 97.35 fl, mean carbohydrate deficient transferrin (%CDT) was 8.68, and mean total ethanol intake in the last 7 days was 1653 g. PEth was measured in heparinized whole blood with a high-pressure liquid chromatography method, while GGT, MCV and %CDT were measured using routine methods. PEth levels at day 1 of detoxification ranged between 0.63 and 26.95 mu mol/l (6.22 mean, 4.70 median, SD 4.97). There were no false negatives at day 1. Sensitivities for the other biomarkers were 40.4% for MCV, 73.1% for GGT and 69.2% for %CDT, respectively. No gender differences were found for PEth levels at any time point. Our data suggest that PEth is (1) a suitable intermediate term marker of ethanol intake in both sexes; and (2) sensitivity is extraordinary high in alcohol dependent patients. The results add further evidence to the data that suggest that PEth has potential as a candidate for a sensitive and specific biomarker, which reflects longer-lasting intake of higher amounts of alcohol and seemingly has the above mentioned certain advantages over traditional biomarkers.
  •  
4.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Ghrelin increases intake of rewarding food in rodents
  • 2010
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 15:3, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.
  •  
5.
  • Jerlhag, Elisabeth, 1978, et al. (författare)
  • Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system.
  • 2011
  • Ingår i: Addiction Biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 16:1, s. 82-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, we demonstrated that the central ghrelin signalling system, involving the ghrelin receptor (GHS-R1A), is important for alcohol reinforcement. Ghrelin targets a key mesolimbic circuit involved in natural as well as drug-induced reinforcement, that includes a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present study was to determine whether it is possible to suppress ghrelin's effects on this mesolimbic dopaminergic pathway can be suppressed, by interrupting afferent inputs to the VTA dopaminergic cells, as shown previously for cholinergic afferents. Thus, the effects of pharmacological suppression of glutamatergic, orexin A and opioid neurotransmitter systems on ghrelin-induced activation of the mesolimbic dopamine system were investigated. We found in the present study that ghrelin-induced locomotor stimulation was attenuated by VTA administration of the N-methyl-D-aspartic acid receptor antagonist (AP5) but not by VTA administration of an orexin A receptor antagonist (SB334867) or by peripheral administration of an opioid receptor antagonist (naltrexone). Intra-VTA administration of AP5 also suppressed the ghrelin-induced dopamine release in the nucleus accumbens. Finally the effects of peripheral ghrelin on locomotor stimulation and accumbal dopamine release were blocked by intra-VTA administration of a GHS-R1A antagonist (BIM28163), indicating that GHS-R1A signalling within the VTA is required for the ghrelin-induced activation of the mesolimbic dopamine system. Given the clinical knowledge that hyperghrelinemia is associated with addictive behaviours (such as compulsive overeating and alcohol use disorder) our finding highlights a potential therapeutic strategy involving glutamatergic control of ghrelin action at the level of the mesolimbic dopamine system.
  •  
6.
  • Skibicka, Karolina P, et al. (författare)
  • Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression.
  • 2012
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 17:1, s. 95-107
  • Tidskriftsartikel (refereegranskat)abstract
    • The decision to eat is strongly influenced by non-homeostatic factors such as food palatability. Indeed, the rewarding and motivational value of food can override homeostatic signals, leading to increased consumption and hence, obesity. Ghrelin, a gut-derived orexigenic hormone, has a prominent role in homeostatic feeding. Recently, however, it has emerged as a potent modulator of the mesolimbic dopaminergic reward pathway, suggesting a role for ghrelin in food reward. Here, we sought to determine whether ghrelin and its receptors are important for reinforcing motivation for natural sugar reward by examining the role of ghrelin receptor (GHS-R1A) stimulation and blockade for sucrose progressive ratio operant conditioning, a procedure used to measure motivational drive to obtain a reward. Peripherally and centrally administered ghrelin significantly increased operant responding and therefore, incentive motivation for sucrose. Utilizing the GHS-R1A antagonist JMV2959, we demonstrated that blockade of GHS-R1A signaling significantly decreased operant responding for sucrose. We further investigated ghrelin's effects on key mesolimbic reward nodes, the ventral tegmental area (VTA) and nucleus accumbens (NAcc), by evaluating the effects of chronic central ghrelin treatment on the expression of genes encoding major reward neurotransmitter receptors, namely dopamine and acetylcholine. Ghrelin treatment was associated with an increased dopamine receptor D5 and acetylcholine receptor nAChRβ2 gene expression in the VTA and decreased expression of D1, D3, D5 and nAChRα3 in the NAcc. Our data indicate that ghrelin plays an important role in motivation and reinforcement for sucrose and impacts on the expression of dopamine and acetylcholine encoding genes in the mesolimbic reward circuitry. These findings suggest that ghrelin antagonists have therapeutic potential for the treatment of obesity and to suppress the overconsumption of sweet food.
  •  
7.
  • Watanabe, Hiroyuki, et al. (författare)
  • FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices of human alcoholics
  • 2009
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 14:3, s. 294-297
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor DeltaFosB is accumulated in the addiction circuitry, including the orbitofrontal and medial prefrontal cortices of rodents chronically exposed to ethanol or other drugs of abuse, and has been suggested to play a direct role in addiction maintenance. To address this hypothesis in the context of substance dependence in humans, we compared the immunoreactivities of FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices (OFC and DLPFC respectively) between controls and alcoholics using semiquantitative immunoblotting. In both structures, we detected three forms of FOSB, one of which was DeltaFOSB, but in neither case did their immunoreactivities differ between the groups. Our results indicate that the DeltaFOSB immunoreactivity in the human brain is very low, and that it is not accumulated in the OFC and DLPFC of human alcoholics, suggesting that it may not be directly involved in addiction maintenance, at least not in ethanol dependence.
  •  
8.
  • Bazov, Igor, et al. (författare)
  • The endogenous opioid system in human alcoholics : molecular adaptations in brain areas involved in cognitive control of addiction
  • 2013
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 18:1, s. 161-169
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous opioid system (EOS) plays a critical role in addictive processes. Molecular dysregulations in this system may be specific for different stages of addiction cycle and neurocircuitries involved and therefore may differentially contribute to the initiation and maintenance of addiction. Here we evaluated whether the EOS is altered in brain areas involved in cognitive control of addiction including the dorsolateral prefrontal cortex (dl-PFC), orbitofrontal cortex (OFC) and hippocampus in human alcohol-dependent subjects. Levels of EOS mRNAs were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and levels of dynorphins by radioimmunoassay (RIA) in post-mortem specimens obtained from 14 alcoholics and 14 controls. Prodynorphin mRNA and dynorphins in dl-PFC, κ-opioid receptor mRNA in OFC and dynorphins in hippocampus were up-regulated in alcoholics. No significant changes in expression of proenkephalin, and µ- and δ-opioid receptors were evident; pro-opiomelanocortin mRNA levels were below the detection limit. Activation of the κ-opioid receptor by up-regulated dynorphins in alcoholics may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control.
  •  
9.
  • Björk, Karl, et al. (författare)
  • Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptors
  • 2010
  • Ingår i: Addiction Biology. - : Wiley-Blackwell. - 1355-6215 .- 1369-1600. ; 15:3, s. 299-303
  • Tidskriftsartikel (refereegranskat)abstract
    • The reinforcing properties of ethanol are in part attributed to interactions between opioid and dopaminergic signaling pathways, but intracellular mediators of such interactions are poorly understood. Here we report that an acute ethanol challenge induces a robust phosphorylation of two key signal transduction kinases, AKT and DARPP-32, in the striatum of mice. Ethanol-induced AKT phosphorylation was blocked by the opioid receptor antagonist naltrexone but unaffected by blockade of dopamine D2 receptors via sulpiride. In contrast, DARPP-32 phosphorylation was abolished by both antagonists. These data suggest that ethanol acts via two distinct but potentially synergistic striatal signaling cascades. One of these is D2-dependent, while the other is not. These findings illustrate that pharmacology of ethanol reward is likely more complex than that for other addictive drugs.
  •  
10.
  • Chau, Pei Pei, 1981, et al. (författare)
  • The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.
  • 2011
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215.
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 77
Typ av publikation
tidskriftsartikel (76)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (75)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Jerlhag, Elisabeth, ... (14)
Söderpalm, Bo, 1959 (14)
Ericson, Mia, 1970 (14)
Adermark, Louise, 19 ... (12)
Engel, Jörgen, 1942 (8)
Egecioglu, Emil, 197 ... (8)
visa fler...
Bakalkin, Georgy (5)
Dickson, Suzanne L., ... (5)
Heilig, Markus (5)
Morud, Julia, 1984 (4)
Fuxe, K (4)
Heilig, Markus, 1959 ... (4)
Vallöf, Daniel, 1988 (4)
Nyberg, Fred (3)
Kalafateli, Aimilia ... (3)
Watanabe, Hiroyuki (3)
Thorsell, Annika (3)
Yakovleva, Tatjana (3)
Steensland, P (3)
Fredriksson, I (2)
Loftén, Anna (2)
Jonsson, Susanne, 19 ... (2)
Licheri, Valentina (2)
Clarke, Rhona B. C. (2)
Ulenius, Lisa, 1987 (2)
Franck, J (2)
Bergquist, Filip, 19 ... (2)
Comasco, Erika (2)
Femenia, T (2)
Alling, Christer (2)
Roman, Erika (2)
Skibicka, Karolina P (2)
Aradottir, Steina (2)
Nilsson, Kent W. (2)
Gago, B (2)
Vestlund, Jesper (2)
Augier, Eric (2)
Bazov, Igor (2)
Sommer, Wolfgang H. (2)
Barbier, Estelle (2)
Schank, Jesse R. (2)
Mann, K (2)
Sheedy, Donna (2)
Taqi, Malik Mumtaz (2)
Haggkvist, J (2)
Diaz-Cabiale, Z (2)
Sommer, WH (2)
Björk, Karl (2)
Filip, M (2)
Lindholm, S (2)
visa färre...
Lärosäte
Göteborgs universitet (33)
Karolinska Institutet (25)
Uppsala universitet (12)
Linköpings universitet (10)
Lunds universitet (3)
Mälardalens universitet (2)
visa fler...
Örebro universitet (2)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (76)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Naturvetenskap (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy