SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1434 5161 OR L773:1435 232X "

Sökning: L773:1434 5161 OR L773:1435 232X

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chiang, Huei-Hsin, et al. (författare)
  • Novel TARDBP mutations in Nordic ALS patients
  • 2012
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 57:5, s. 316-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a neurodegenerative syndrome primarily affecting the upper and lower motor neurons. A characteristic neuropathological finding in ALS patients is neuronal inclusions positive for TAR DNA-binding protein 43 (TDP-43). Subsequently, mutations in the gene encoding TDP-43, TARDBP, proved to be involved in the development of ALS. We thus sequenced TARDBP in 177 Nordic ALS patients and found two previously reported (p.A90V and p.S379P) and two novel (p.G357R and p.R361T) missense variations in three familial ALS patients. The p.A90V and p.G357R variations were detected in the same patient and p.R361T was present in a family with both ALS and frontotemporal dementia-ALS. None of the missense variations were present in 200 neurologically healthy controls. However, p.A90V has also been reported in healthy individuals by others. Thus, the data suggest that these variations are rare and p.G357R, p.R361T and p.S379P are likely pathogenic but further functional characterization is needed to prove their pathogenicity. The mutation frequency in TARDBP in Nordic ALS patients was 1.7%. The ALS cohort was highly selected for a positive family history suggesting that mutations in TARDBP generally are a rare cause of ALS in Nordic countries.
  •  
2.
  •  
3.
  •  
4.
  • Crawford, A. A., et al. (författare)
  • Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease
  • 2021
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 66:6, s. 625-636
  • Tidskriftsartikel (refereegranskat)abstract
    • The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from similar to 2.2 M to similar to 7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and alpha 1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06-0.59) and myocardial infarction (0.21, 95% CI 0.00-0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.
  •  
5.
  • Fellman, Vineta, et al. (författare)
  • Screening of BCS1L mutations in severe neonatal disorders suspicious for mitochondrial cause
  • 2008
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 53:6, s. 554-558
  • Tidskriftsartikel (refereegranskat)abstract
    • The BCS1L gene encodes a chaperone responsible for assembly of respiratory chain complex III (CIII). A homozygous point mutation (232A -> G) has been found as the genetic etiology for fetal growth retardation, amino aciduria, cholestasis, iron overload, lactic acidosis, and early death (GRACILE) syndrome (MIM 603358). Variable phenotypes have been found with other mutations. Our aim was to assess whether 232A -> G or other BCS1L mutations were present in infants (n = 21) of Finnish origin with severe, lethal disease compatible with mitochondrial disorder. A further aim was to confirm the GRACILE genotype-phenotype constancy (n = 8). Three new cases with homozygous 232A -> G mutation were identified; all had the primary GRACILE characteristics. No other mutations were found in the gene in other cases. All infants with GRACILE syndrome had the typical mutation. In conclusion, the rather homogenous population of Finns seems to have a specific BCS1L mutation that, as homozygous state, causes GRACILE syndrome, whereas other mutations are rare or not occurring. Thus, the novel clinical implication of this study is to screen for BCS1L mutations only if CIII is dysfunctioning or lacking Rieske protein, and to assess 232A -> G mutation in cases with GRACILE syndrome.
  •  
6.
  • Gabriková, Dana, et al. (författare)
  • Familiar Meniere's disease restricted to 1.48 Mb on chromosome 12p12.3 by allelic and haplotype association
  • 2010
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 55:12, s. 834-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Meniere's disease (MD) is a disorder of the inner ear characterized by episodes of vertigo, tinnitus and fluctuating sensorineural hearing loss. Most MD cases are sporadic, but 5-15% of patients are familial following an autosomal dominant mode of inheritance with incomplete penetrance. We have previously identified a candidate gene region for MD on chromosome 12p12.3 using linkage analysis. We genotyped 15 Swedish families segregating familial MD (FMD) to further clarify the role of chromosome 12p in a larger cohort of families. Highly polymorphic marker loci were analyzed over the 16-Mb candidate region in affected and healthy family members as well as in control subjects. The results revealed allelic association between FMD and several individual polymorphic marker alleles and single-nucleotide polymorphisms. Moreover, a common three-marker haplotype spanning 1.48 Mb co-segregates with FMD in 60% of the families investigated, forming the core of a possible ancestral haplotype associated with FMD in Sweden.
  •  
7.
  • Hammarsjö, A., et al. (författare)
  • High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses
  • 2021
  • Ingår i: Journal of Human Genetics. - : Springer Nature. - 1434-5161 .- 1435-232X. ; 66:10, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
  •  
8.
  •  
9.
  •  
10.
  • Jankovic, Gradimir, et al. (författare)
  • Rates of nucleotide substitution, mutation at a locus, and the "beanbag" gene number in man
  • 2002
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 47:4, s. 4-202
  • Tidskriftsartikel (refereegranskat)abstract
    • We estimated the number of different human genes by relating the patterns of spontaneous mutation at the population and individual level. A geometric distribution model of mutation was used in which the average rates of nucleotide replacement (P) and mutation at a locus (p), obtained by experiment, were used to determine the estimate of the physical size of the coding genome (n) in man. The probabilistic relation used, P = (1 - p)(n-1)p, integrates two different referential time scales of mutation, that of a nucleotide and year and that of a coding gene and generation. The estimates of n, for different values of P and p, are compatible with the experimentally determined genome sizes. The size of the coding portion of the genome appears to be evolutionarily constrained by an interplay between the rate of nucleotide replacement and the pattern of mutation at the level of the individual locus. The evolution of the size of the coding genome may be more dependent on the number of generations than on time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy