SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1521 334X OR L773:1558 0822 "

Sökning: L773:1521 334X OR L773:1558 0822

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrae, Anders, 1973, et al. (författare)
  • Uncertainty estimation by Monte Carlo simulation applied to life cycle inventory of cordless phones and microscale metallization processes
  • 2004
  • Ingår i: IEEE transactions on electronics packaging manufacturing (Print). - 1521-334X .- 1558-0822. ; 27:4, s. 233-245, s. 206-217
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on uncertainty analysis, that is, how the input data uncertainty affects the output data uncertainty in small but realistic product systems. The motivation for the study is to apply the Monte Carlo simulation for uncertainty estimation in life cycle inventory and environmental assessment of microelectronics applications. The present paper addresses the question whether there is an environmental advantage of using digital enhanced cordless telecommunications (DECT) phones instead of global system for mobile (GSM) phones in offices. This paper also addresses the environmental compatibility of electrochemical pattern replication (ECPR) compared to classical photolithography-based microscale metallization (CL) for pattern transfer. Both environmental assessments in this paper consider electricity consumption and CO2 emissions and the projects undertaken are two comparative studies of DECT phone/GSM phone and ECPR/CL, respectively. The research method used was probabilistic uncertainty modeling with a limited number of inventory parameters used in the MATLAB tool. For the DECT/GSM study the results reflects the longer DECT technical life which is an environmental advantage. For the electrochemical pattern replication (ECPR)/classical photolithography based microscale metallization (CL) study the results reflects the fewer number of process steps and the lower electricity consumption needed by the ECPR to reach the functional unit. The difference in results is large enough to be able to draw conclusions, as the processes, having the highest electricity consumption within the system boundaries have been determined. Based on an earlier work, a straightforward method to include uncertainty for input life cycle inventory data is used to quantify the influence of realistic errors for input data in two microelectronic applications. The conclusion is that the ECPR technology is more electricity efficient than CL in producing one layer of copper on a silicon wafer having a diameter of 20.32 cm. Furthermore, the longer technical life of a cordless DECT phone is reflected in an electricity/CO2 comparison with a GSM phone, if office use is considered. Reasonable uncertainty intervals, used for the input life cycle inventory data for the studied DECT/GSM and ECPR/CL system, does affect the outcome of calculation of emission of CO2, but not to the degree that conclusions are not valid. Different uncertainty intervals and probability distributions could apply for different types of data and the interrelated input data dependencies should be investigated. Today there exist very few life cycle inventory (LCI) data with the range of uncertainty for input and output elements. It must be emphasized that the upcoming LCI databases should have standard deviation characterized LCI data just as the Swiss ecoinvent LCI database. More inventory parameters and probability distributions characteristic for microsystems could be included and error analysis should be applied to future life inventory methodology, especially for future packaging concepts such as system-in-a-package and system-on-a-chip comparisons.
  •  
2.
  • Shen, Meigen, et al. (författare)
  • Cost and performance analysis for mixed-signal system implementation: system-on-chip or system-on-package?
  • 2002
  • Ingår i: IEEE transactions on electronics packaging manufacturing (Print). - 1521-334X .- 1558-0822. ; 25:4, s. 262-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances, in integrated circuits and packaging technologies provided us more implementation options for mixed-signal systems. Emerging technologies are represented by system-on-chip (SoC) and system-on-package (SoP). In order to make a design decision or optimal system implementation, it is hence becoming more and more important to address the cost and performance issues for various implementation options early in a system deign phase. In this paper, we develop a modeling technique for a priori cost and performance estimations for mixed-signal system implementations. The performance model evaluates various noise isolation technologies, such as using guard rings, increasing the separation between digital and analog/RF circuitry parts, using special substrate materials (e.g., silicon-on-insulator), and partitioning the system into several chips. Besides, performance of particular analog/RF circuits such as low-noise amplifier (LNA), is also measured by their specific figure-of-merit (FoM), which considered the effects of substrate coupling, the quality factor (Q) of RF components, and packaging parasities. In cost analysis, new factors such as extra chip area and additional process steps due to mixed signal isolation, integration of intellectual property (IP) right module or "virtual components," yield and technology compatibility for merging logic, memory and analog/RF circuits on a single chip, are considered. Finally, an efficient computation algorithm, namely COMSI, was developed for cost estimation under various mixed-signal performance constraints. Case studies for SoC and Sol? integration are performed using COMSI.
  •  
3.
  • Uhlig, Steffen, et al. (författare)
  • Preventing of dewetting effects for inorganic-organic hybrid polymers applied in sequentially buildup (SBU) technology without surface pretreatments
  • 2006
  • Ingår i: IEEE transactions on electronics packaging manufacturing (Print). - 1521-334X .- 1558-0822. ; 29:4, s. 297-307
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon processing waveguide structures by using the ORMOCER materials ORMOCORE as core material, and a mixture of ORMOCORE and ORMOCER-III (refractive index tuning agent) as cladding material, dewetting effects of the core layer from the cladding layer were observed. A similar phenomenon was observed for a mixture of ORMOCORE and ORMOCLAD which was used as comparative refractive index tuning material. In order to use these material combinations for large-area panel (LAP) processing, a pretreatment or activation of surfaces is necessary but hard to realize. However, the addition of small amounts of ORMOCER-III or ORMOCLAD, respectively, to the core layer material, prevented the dewetting phenomenon. The objective of this, however, is to minimize the content of refractive index tuning agent in the core layer by retaining a good wetting behavior during multilayer processing. Wet film stability tests and contact angle measurements of these ORMOCER systems in various compositions on another ORMOCER surface of a specific cladding material composition were performed on a hotplate. Furthermore, contact angles of droplets formed by deionized water, formamide, and di-iodomethane on cured surfaces of these ORMOCER systems in a wide range of compositions were characterized, and surface tensions were calculated. By adding 0.1 wt% of ORMOCER-III or 5 wt% ORMOCLAD, respectively, to the pure ORMOCORE solution, the dewetting phenomenon was eliminated, while simultaneously the refractive index was affected only to a minor degree and no changes in the optical loss could be detected. It was shown that by adding ORMOCER-III or ORMOCLAD to pure ORMOCORE, the surface tension of the compound system was reduced. In comparison to silanization or gasplasma treatment to overcome dewetting effects in microelectronics multilayer processing, the investigated mixing method eliminates process steps and thus costs, and opens new process routes for LAP processing. © 2006 IEEE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy