SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1552 4604 OR L773:0091 2700 "

Sökning: L773:1552 4604 OR L773:0091 2700

  • Resultat 1-10 av 75
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahn, Jae Eun, et al. (författare)
  • Modeling longitudinal daily seizure frequency data from pregabalin add-on treatment
  • 2012
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 52:6, s. 880-892
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to describe longitudinal daily seizure count data with respect to the effects of time and pregabalin add-on therapy. Models were developed in step-wise manner: base model, time effect model, and time and drug effect (final) model, using a negative binomial distribution with Markovian features. Mean daily seizure count (λ) was estimated to be 0.385 (RSE 3.09%) and was further increased depending on the seizure count on the previous day. An overdispersion parameter (OVDP), representing extra-Poisson variation, was estimated to be 0.330 (RSE 11.7%). Inter-individual variances on λ and OVDP were 84.7% and 210%, respectively. Over time, λ tended to increase exponentially with a rate constant of 0.272 year-1 (RSE 26.8%). A mixture model was applied to classify responders/non-responders to pregabalin treatment. Within the responders, λ decreased exponentially with respect to dose with a constant of 0.00108 mg-1 (RSE 11.9%). The estimated responder rate was 66% (RSE 27.6%). Simulation-based diagnostics showed the model reasonably reproduced the characteristics of observed data. Highly variable daily seizure frequency was successfully characterized incorporating baseline characteristics, time effect, and the effect of pregabalin with classification of responders/non-responders, all of which are necessary to adequately assess the efficacy of antiepileptic drugs.  
  •  
2.
  • Alskär, Oskar, et al. (författare)
  • Semi-mechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes
  • 2016
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 56:3, s. 340-348
  • Tidskriftsartikel (refereegranskat)abstract
    • The integrated glucose-insulin (IGI) model is a previously published semi-mechanistic model, which describes plasma glucose and insulin concentrations after glucose challenges. The aim of this work was to use knowledge of physiology to improve the IGI model's description of glucose absorption and gastric emptying after tests with varying glucose doses. The developed model's performance was compared to empirical models. To develop our model, data from oral and intravenous glucose challenges in patients with type 2 diabetes and healthy control subjects were used together with present knowledge of small intestinal transit time, glucose inhibition of gastric emptying and saturable absorption of glucose over the epithelium to improve the description of gastric emptying and glucose absorption in the IGI model. Duodenal glucose was found to inhibit gastric emptying. The performance of the saturable glucose absorption was superior to linear absorption regardless of the gastric emptying model applied. The semi-physiological model developed performed better than previously published empirical models and allows for better understanding of the mechanisms underlying glucose absorption. In conclusion, our new model provides a better description and improves the understanding of dynamic glucose tests involving oral glucose.
  •  
3.
  •  
4.
  •  
5.
  • Bergman, Ebba, 1977-, et al. (författare)
  • Effect of a Single Gemfibrozil Dose on the Pharmacokinetics of Rosuvastatin in Bile and Plasma in Healthy Volunteers
  • 2010
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 50:9, s. 1039-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a single intrajejunal dose of gemfibrozil (600 mg) on the plasma pharmacokinetics and biliary excretion of a single intrajejunal dose of rosuvastatin (20 mg) was investigated by using a multichannel catheter positioned in the distal duodenum/proximal jejunum in eight healthy volunteers. Bile and plasma samples were collected every 20 min for 200 min, with additional plasma samples being withdrawn for up to 48 hrs. Gemfibrozil did not affect the bioavailability of rosuvastatin, although it increased the apparent absorption phase during the initial 200 minutes (AUC0-200) by 1.56-fold (95%CI: 1.14-2.15). The interaction was less pronounced in this single dose study than in a previous report when gemfibrozil was administered repeatedly, nevertheless, the interaction coincided with the highest exposure to gemfibrozil. The plausible reason why the interaction in this investigation was only minor is the low exposure to gemfibrozil (and its metabolites), suggesting that the total plasma concentration of gemfibrozil needs to be above 20 µM in order to affect the disposition of rosuvastatin. This study demonstrates the value of monitoring the plasma pharmacokinetics of the inhibitor, and not only the drug under investigation, to improve the mechanistic interpretation.
  •  
6.
  • Buesker, Soeren, et al. (författare)
  • Population Pharmacokinetics as a Tool to Reevaluate the Complex Disposition of Ethanol in the Fed and Fasted States
  • 2023
  • Ingår i: Journal of clinical pharmacology. - : WILEY. - 0091-2700 .- 1552-4604. ; 63, s. 681-694
  • Tidskriftsartikel (refereegranskat)abstract
    • The pharmacokinetics (PK) of ethanol are important in pharmacology and therapeutics because of potential drug-alcohol interactions as well as in forensic science when alcohol-related crimes are investigated. The PK of ethanol have been extensively studied since the 1930s, although some issues remain unresolved, such as the significance of first-pass metabolism, whether zero-order kinetics apply, and the effects of food on bioavailability. We took advantage of nonlinear mixed-effects modeling to describe blood-alcohol concentration (BAC) profiles derived from 3 published clinical studies involving oral, intraduodenal, and intravenous administration of ethanol with and without food. The overall data set included 1510 BACs derived from 72 healthy subjects (60 men, 12 women) aged between 20 and 60 years. Two-compartment models with first-order absorption and Michaelis-Menten elimination kinetics adequately described the BAC profiles. Food intake had 2 separate effects: It reduced the absorption rate constant and accelerated the maximum elimination rate. Estimates of the maximum elimination rate (fasted) and the food effect (as a factor) were 6.31 g/h (95%CI, 6.04-6.59 g/h) and 1.39-fold (95%CI, 1.33-1.46-fold), respectively. Simulations showed that the area under the BAC-time curve (AUC) was smaller with lower input rate of ethanol, irrespective of any first-pass metabolism. The AUC from time 0 to 10 hours for a 75-kg subject was 2.34 g center dot h/L (fed) and 3.83 g center dot h/L (fasted) after an oral dose of 45 g ethanol. This difference was mainly attributable to the food effect on ethanol elimination and depended less on the absorption rate. Our new approach to explain the complex human PK of ethanol may help when BAC predictions are made in clinical pharmacology and forensic medicine.
  •  
7.
  • Chaurasia, Chandra S., et al. (författare)
  • AAPS-FDA Workshop White Paper : microdialysis principles, application, and regulatory perspectives
  • 2007
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 47:5, s. 589-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Many decisions in drug development and medical practice are based on measuring blood concentrations of endogenous and exogenous molecules. Yet most biochemical and pharmacological events take place in the tissues. Also, most drugs with few notable exceptions exert their effects not within the bloodstream, but in defined target tissues into which drugs have to distribute from the central compartment. Assessing tissue drug chemistry has, thus, for long been viewed as a more rational way to provide clinically meaningful data rather than gaining information from blood samples. More specifically, it is often the extracellular (interstitial) tissue space that is most closely related to the site of action (biophase) of the drug. Currently microdialysis (μD) is the only tool available that explicitly provides data on the extracellular space. Although μD as a preclinical and clinical tool has been available for two decades, there is still uncertainty about the use of μD in drug research and development, both from a methodological and a regulatory point of view. In an attempt to reduce this uncertainty and to provide an overview of the principles and applications of μD in preclinical and clinical settings, an AAPS-FDA workshop took place in November 2005 in Nashville, TN, USA. Stakeholders from academia, industry and regulatory agencies presented their views on μD as a tool in drug research and development.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 75

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy