SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1555 4317 OR L773:1555 4309 "

Sökning: L773:1555 4317 OR L773:1555 4309

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arteaga-Marrero, N, et al. (författare)
  • Multimodal approach to assess tumour vasculature and potential treatment effect with DCE-US and DCE-MRI quantification in CWR22 prostate tumour xenografts.
  • 2015
  • Ingår i: Contrast Media & Molecular Imaging. - : Wiley. - 1555-4317 .- 1555-4309. ; 10:6, s. 428-437
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to compare intratumoural heterogeneity and longitudinal changes assessed by dynamic contrast-enhanced ultrasound (DCE-US) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in prostate tumour xenografts. In vivo DCE-US and DCE-MRI were obtained 24 h pre- (day 0) and post- (day 2) radiation treatment with a single dose of 7.5 Gy. Characterization of the tumour vasculature was determined by Brix pharmacokinetic analysis of the time-intensity curves. Histogram analysis of voxels showed significant changes (p < 0.001) from day 0 to day 2 in both modalities for kep , the exchange rate constant from the extracellular extravascular space to the plasma, and kel , the elimination rate constant of the contrast. In addition, kep and kel values from DCE-US were significantly higher than those derived from DCE-MRI at day 0 (p < 0.0001) for both groups. At day 2, kel followed the same tendency for both groups, whereas kep showed this tendency only for the treated group in intermediate-enhancement regions. Regarding kep median values, longitudinal changes were not found for any modality. However, at day 2, kep linked to DCE-US was correlated to MVD in high-enhancement areas for the treated group (p = 0.05). In contrast, correlation to necrosis was detected for the control group in intermediate-enhancement areas (p < 0.1). Intratumoural heterogeneity and longitudinal changes in tumour vasculature were assessed for both modalities. Microvascular parameters derived from DCE-US seem to provide reliable biomarkers during radiotherapy as validated by histology. Furthermore, DCE-US could be a stand-alone or a complementary technique. Copyright © 2015 John Wiley & Sons, Ltd.
  •  
2.
  •  
3.
  • Jynge, Per, et al. (författare)
  • MnDPDP: Contrast Agent for Imaging and Protection of Viable Tissue
  • 2020
  • Ingår i: Contrast Media & Molecular Imaging. - : WILEY-HINDAWI. - 1555-4309 .- 1555-4317. ; 2020
  • Forskningsöversikt (refereegranskat)abstract
    • The semistable chelate manganese (Mn) dipyridoxyl diphosphate (MnDPDP, mangafodipir), previously used as an intravenous (i.v.) contrast agent (Teslascan (TM), GE Healthcare) for Mn-ion-enhanced MRI (MEMRI), should be reappraised for clinical use but now as a diagnostic drug with cytoprotective properties. Approved for imaging of the liver and pancreas, MnDPDP enhances contrast also in other targets such as the heart, kidney, glandular tissue, and potentially retina and brain. Transmetallation releases paramagnetic Mn2+ for cellular uptake in competition with calcium (Ca2+), and intracellular (IC) macromolecular Mn2+ adducts lower myocardial T-1 to midway between native values and values obtained with gadolinium (Gd3+). What is essential is that T-1 mapping and, to a lesser degree,T-1 weighted imaging enable quantification of viability at a cellular or even molecular level. IC Mn2+ retention for hours provides delayed imaging as another advantage. Examples in humans include quantitative imaging of cardiomyocyte remodeling and of Ca2+ channel activity, capabilities beyond the scope of Gd3+ based or native MRI. In addition, MnDPDP and the metabolite Mn dipyridoxyl diethyl-diamine (MnPLED) act as catalytic antioxidants enabling prevention and treatment of oxidative stress caused by tissue injury and inflammation. Tested applications in humans include protection of normal cells during chemotherapy of cancer and, potentially, of ischemic tissues during reperfusion. Theragnostic use combining therapy with delayed imaging remains to be explored. This review updates MnDPDP and its clinical potential with emphasis on the working mode of an exquisite chelate in the diagnosis of heart disease and in the treatment of oxidative stress.
  •  
4.
  • Klasson, Anna, et al. (författare)
  • Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles
  • 2008
  • Ingår i: Contrast Media and Molecular Imaging. - : Wiley. - 1555-4309 .- 1555-4317. ; 3:3, s. 106-111
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.
  •  
5.
  • Lagerstedt, Jens, et al. (författare)
  • EPR assessment of protein sites for incorporation of Gd(III) MRI contrast labels.
  • 2013
  • Ingår i: Contrast Media & Molecular Imaging. - : Wiley. - 1555-4317 .- 1555-4309. ; 8:3, s. 252-264
  • Tidskriftsartikel (refereegranskat)abstract
    • We have engineered apolipoprotein A-I (apoA-I), a major protein constituent of high-density lipoprotein (HDL), to contain DOTA-chelated Gd(III) as an MRI contrast agent for the purpose of imaging reconstituted HDL (rHDL) biodistribution, metabolism and regulation in vivo. This protein contrast agent was obtained by attaching the thiol-reactive Gd[MTS-ADO3A] label at Cys residues replaced at four distinct positions (52, 55, 76 and 80) in apoA-I. MRI of infused mice previously showed that the Gd-labeled apoA-I migrates to both the liver and the kidney, the organs responsible for HDL catabolism; however, the contrast properties of apoA-I are superior when the ADO3A moiety is located at position 55, compared with the protein labeled at positions 52, 76 or 80. It is shown here that continuous wave X-band (9 GHz) electron paramagnetic resonance (EPR) spectroscopy is capable of detecting differences in the Gd(III) signal when comparing the labeled protein in the lipid-free with the rHDL state. Furthermore, the values of NMR relaxivity obtained for labeled variants in both the lipid-free and rHDL states correlate to the product of the X-band Gd(III) spectral width and the collision frequency between a nitroxide spin label and a polar relaxation agent. Consistent with its superior relaxivity measured by NMR, the rHDL-associated apoA-I containing the Gd[MTS-ADO3A] probe attached to position 55 displays favorable dynamic and water accessibility properties as determined by X-band EPR. While room temperature EPR requires >1 m m Gd(III)-labeled and only >10 µ m nitroxide-labeled protein to resolve the spectrum, the volume requirement is exceptionally low (~5 µl). Thus, X-band EPR provides a practical assessment for the suitability of imaging candidates containing the site-directed ADO3A contrast probe. Copyright © 2013 John Wiley & Sons, Ltd.
  •  
6.
  • Li, Yuyang, et al. (författare)
  • A Library of Potential Nanoparticle Contrast Agents for X-Ray Fluorescence Tomography Bioimaging
  • 2018
  • Ingår i: Contrast Media & Molecular Imaging. - : WILEY-HINDAWI. - 1555-4309 .- 1555-4317.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticles (NPs) have been used as contrast agents for several bioimaging modalities. X-ray fluorescence (XRF) tomography can provide sensitive and quantitative 3D detection of NPs. With spectrally matched NPs as contrast agents, we demonstrated earlier in a laboratory system that XRF tomography could achieve high-spatial-resolution tumor imaging in mice. Here, we present the synthesis, characterization, and evaluation of a library of NPs containing Y, Zr, Nb, Rh, and Ru that have spectrally matched K-shell absorption for the laboratory scale X-ray source. The K-shell emissions of these NPs are spectrally well separated from the X-ray probe and the Compton background, making them suitable for the lab-scale XRF tomography system. Their potential as XRF contrast agents is demonstrated successfully in a small-animal equivalent phantom, confirming the simulation results. The diversity in the NP composition provides a flexible platform for a better design and biological optimization of XRF tomography nanoprobes.
  •  
7.
  • Mitran, Bogdan, et al. (författare)
  • High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26
  • 2017
  • Ingår i: Contrast Media & Molecular Imaging. - : Hindawi Limited. - 1555-4309 .- 1555-4317.
  • Tidskriftsartikel (refereegranskat)abstract
    • High gastrin releasing peptide receptor (GRPR) expression is associated with numerous cancers including prostate and breast cancer. The aim of the current study was to develop a Co-55-labeled PET agent based on GRPR antagonist RM26 for visualization of GRPR-expressing tumors. Labeling with Co-57 and Co-55, stability, binding specificity, and in vitro and in vivo characteristics of Co-57-NOTA-PEG(2)-RM26 were studied. NOTA-PEG(2)-RM26 was successfully radiolabeled with Co-57 and Co-55 with high yields and demonstrated high stability. The radiopeptide showed retained binding specificity to GRPR in vitro and in vivo. Co-57-NOTA-PEG(2)-RM26 biodistribution in mice was characterized by rapid clearance of radioactivity from blood and normal non-GRPR-expressing organs and low hepatic uptake. The clearance was predominantly renal with a low degree of radioactivity reabsorption. Tumor-to-blood ratios were approximately 200 (3 h pi) and 1000 (24 h pi). The favorable biodistribution of cobalt-labeled NOTA-PEG(2)-RM26 translated into high contrast preclinical PET/CT (using Co-55) and SPECT/CT (using Co-57) images of PC-3 xenografts. The initial biological results suggest that Co-55-NOTA-PEG(2)-RM26 is a promising tracer for PET visualization of GRPR-expressing tumors.
  •  
8.
  • Sandvig, Ioanna, et al. (författare)
  • Labelling of olfactory ensheathing cells with micron-sized particles of iron oxide and detection by MRI
  • 2012
  • Ingår i: Contrast Media & Molecular Imaging. - Hoboken, NJ : Wiley-Blackwell. - 1555-4309 .- 1555-4317. ; 7:4, s. 403-410
  • Tidskriftsartikel (refereegranskat)abstract
    • A crucial issue in transplant-mediated repair of the damaged central nervous system (CNS) is serial non-invasive imaging of the transplanted cells, which has led to interest in the application of magnetic resonance imaging (MRI) combined with designated intracellular magnetic labels for cell tracking. Micron-sized particles of iron oxide (MPIO) have been successfully used to track cells by MRI, yet there is relatively little known about either their suitability for efficient labelling of specific cell types, or their effects on cell viability. The purpose of this study was to develop a suitable MPIO labelling protocol for olfactory ensheathing cells (OECs), a type of glia used to promote the regeneration of CNS axons after transplantation into the injured CNS. Here, we demonstrate an OEC labelling efficiency of >90% with an MPIO incubation time as short as 6?h, enabling intracellular particle uptake for single-cell detection by MRI without affecting cell proliferation, migration and viability. Moreover, MPIO are resolvable in OECs transplanted into the vitreous body of adult rat eyes, providing the first detailed protocol for efficient and safe MPIO labelling of OECs for non-invasive MRI tracking of transplanted OECs in real time for use in studies of CNS repair and axon regeneration. Copyright (c) 2012 John Wiley & Sons, Ltd.
  •  
9.
  •  
10.
  • Spiegelberg, Diana, 1982-, et al. (författare)
  • CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma : Antibody-Based Approaches
  • 2017
  • Ingår i: Contrast Media & Molecular Imaging. - : Hindawi Publishing Corporation. - 1555-4309 .- 1555-4317.
  • Forskningsöversikt (refereegranskat)abstract
    • Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is amajor interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug-and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab')(2) fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC. We conclude that the current evidence points to CD44v6 imaging being a promising approach for providing more specific and sensitive diagnostic tools, leading to customized treatment decisions and functional diagnosis. Improved imaging tools hold promise to enable more effective treatment for head and neck cancer patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy