SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1558 3724 OR L773:1558 3716 "

Sökning: L773:1558 3724 OR L773:1558 3716

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brooke, Robert, 1989-, et al. (författare)
  • Nanocellulose and PEDOT:PSS composites and their applications
  • 2023
  • Ingår i: Polymer Reviews. - : Taylor and Francis Ltd.. - 1558-3724 .- 1558-3716. ; :2, s. 437-
  • Tidskriftsartikel (refereegranskat)abstract
    • The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics. © 2022 The Author(s). 
  •  
2.
  • Fuoco, Tiziana, PhD, 1986-, et al. (författare)
  • Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters
  • 2020
  • Ingår i: POLYMER REVIEWS. - : TAYLOR & FRANCIS INC. - 1558-3724 .- 1558-3716. ; 60:1, s. 86-113
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider optimal sensor scheduling with unknown communication channel statistics. We formulate two types of scheduling problems with the communication rate being a soft or hard constraint, respectively. We first present some structural results on the optimal scheduling policy using dynamic programming and assuming that the channel statistics is known. We prove that the Q-factor is monotonic and submodular, which leads to threshold-like structures in both problems. Then we develop a stochastic approximation and parameter learning frameworks to deal with the two scheduling problems with unknown channel statistics. We utilize their structures to design specialized learning algorithms. We prove the convergence of these algorithms. Performance improvement compared with the standard Q-learning algorithm is shown through numerical examples, which also discuss an alternative method based on recursive estimation of the channel quality.
  •  
3.
  • Kopf, Sabrina, et al. (författare)
  • Textile Fiber Production of Biopolymers - A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications
  • 2023
  • Ingår i: Polymer reviews. - : Taylor & Francis. - 1558-3724 .- 1558-3716. ; , s. 200-245
  • Forskningsöversikt (refereegranskat)abstract
    • The superior biocompatibility and biodegradability of polyhydroxyalkanoates (PHAs) compared to man-made biopolymers such as polylactic acid promise huge potential in biomedical applications, especially tissue engineering (TE). Textile fiber-based TE scaffolds offer unique opportunities to imitate the anisotropic, hierarchical, or strain-stiffening properties of native tissues. A combination of PHAs' enhanced biocompatibility and fiber-based TE scaffolds could improve the performance of TE scaffolds. However, the PHAs' complex crystallization behavior and the resulting intricate spinning procedures remain a challenge. This review focuses on discussing the developments in PHA melt and wet spinning, their challenges, process parameters, and fiber characteristics while revealing the lack of an in-depth fiber characterization of wet-spun fibers compared to melt-spun filaments, leading to squandered potential in scaffold development. Additionally, the biomedical application of PHAs other than poly-4-hydroxybutyrate is hampered by a failure of polymer purity to meet the requirements for biomedical applications.
  •  
4.
  • Ramamoorthy, Sunil Kumar, et al. (författare)
  • A Review of Natural Fibers Used in Biocomposites : Plant, Animal and Regenerated Cellulose Fibers
  • 2015
  • Ingår i: Polymer Reviews. - : Taylor & Francis. - 1558-3724 .- 1558-3716. ; 55:1, s. 107-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural fibers today are a popular choice for applications in composite manufacturing. Based on the sustainability benefits, biofibers such as plant fibers are replacing synthetic fibers in composites. These fibers are used to manufacture several biocomposites. The chemical composition and properties of each of the fibers changes, which demands the detailed comparison of these fibers. The reinforcement potential of natural fibers and their properties have been described in numerous papers. Today, high performance biocomposites are produced from several years of research. Plant fibers, particularly bast and leaf, find applications in automotive industries. While most of the other fibers are explored in lab scales they have not yet found large-scale commercial applications. It is necessary to also consider other fibers such as ones made from seed (coir) and animals (chicken feather) as they are secondary or made from waste products. Few plant fibers such as bast fibers are often reviewed briefly but other plant and animal fibers are not discussed in detail. This review paper discusses all the six types of plant fibers such as bast, leaf, seed, straw, grass, and wood, together with animal fibers and regenerated cellulose fibers. Additionally, the review considers developments dealing with natural fibers and their composites. The fiber source, extraction, availability, type, composition, and mechanical properties are discussed. The advantages and disadvantages of using each biofiber are discussed. Three fabric architectures such as nonwoven, woven and knitted have been briefly discussed. Finally, the paper presents the overview of the results from the composites made from each fiber with suitable references for in-depth studies.
  •  
5.
  • Park, Taehyun, et al. (författare)
  • Stimuli-Adaptive and Human-Interactive Sensing Displays Enabled by Block Copolymer Structural Color
  • 2023
  • Ingår i: POLYMER REVIEWS. - : TAYLOR & FRANCIS INC. - 1558-3724.
  • Forskningsöversikt (refereegranskat)abstract
    • Displays are an effective way for humans to recognize information instantly and intuitively without linguistic barriers. Electrical sensors detect diverse human and environmental changes through variations in electrical signals; these data are delivered to a display connected to a sensor via a microprocessor, facilitating human/machine interface technologies. The development of an innovative one-integrated platform with optimized architectures, where a sensor and a display are converged, is essential for achieving efficient and rapid information management with low power consumption. These integrated stimuli-adaptive and human-interactive sensing displays (HISDs) electrically detect external stimuli and display an optical visualization simultaneously. Among numerous materials suitable for stimuli-adaptive displays and HISDs, self-assembled photonic crystals (PCs) of block copolymers (BCPs) are promising because of their structural colors (SCs) resulting from constructive interference of incident light. This review provides a comprehensive overview of recent developments in stimuli-adaptive SC displays using self-assembled BCP PCs. The responses of BCP SC displays, operating in liquid cells and solid-type films, to various external stimuli are described. Furthermore, emerging HISDs based on BCP PCs are discussed wherein external stimuli are electrically detected and simultaneous visualization of stimuli-adaptive SCs occurs. A perspective on the development of next-generation stimuli-adaptive BCP SC displays and HISDs is also provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy