SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1567 133X "

Sökning: L773:1567 133X

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Boije, Henrik, et al. (författare)
  • Temporal and spatial expression of transcription factors FoxN4, Ptf1a, Prox1, Isl1 and Lim1 mRNA in the developing chick retina
  • 2008
  • Ingår i: Gene Expression Patterns. - : Elsevier BV. - 1567-133X .- 1872-7298. ; 8:2, s. 117-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factors are pivotal in regulating cell fate and development. We analyzed five transcription factors - FoxN4, Ptf1a, Prox1, Isl1 and Lim1 - with putative functions in the formation of early-generated retinal interneurons. A full-length chicken FoxN4 cDNA was characterized and in situ as well as RT-PCR showed that FoxN4 expression commenced already in the stage 12-14 optic vesicles. Ptf1a, Prox1, Isl1 and Lim1 expression appeared later by stage 20-24, concomitant with the first post-mitotic ganglion-, amacrine- and horizontal cells. The FoxN4 and Ptf1a expression was transient with peak levels by stage 32-35. Expression disappeared as the retinal progenitor cells differentiated. Prox1, Isl1 and Lim1 expression remained in several differentiated cells including the horizontal cells. The order of expression supports a scheme where Ptf1a and Prox1 is downstream of FoxN4 and that FoxN4 and Ptf1a have transient roles during fate specification while Prox1, Isl1 and Lim1 have roles that are important for the generation of the neuronal subtypes.
  •  
9.
  • Correa-Medina, Mayrin, et al. (författare)
  • MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas.
  • 2009
  • Ingår i: Gene Expression Patterns. - : Elsevier BV. - 1567-133X .- 1872-7298. ; 9:4, s. 193-9
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8-22wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9wga and reached its maximum expression levels between 14 and 18wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.
  •  
10.
  • Gritli Linde, Amel, 1959, et al. (författare)
  • Expression patterns of the Tmem16 gene family during cephalic development in the mouse
  • 2009
  • Ingår i: Gene Expression Patterns. - : Elsevier BV. - 1567-133X. ; 9:3, s. 178-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Tmem16a, Tmem16c, Tmem16f, Tmem16h and Tmem16k belong to the newly identified Tmem16 gene family encoding eight-pass transmembrane proteins. We have analyzed the expression patterns of these genes during mouse cephalic development. In the central nervous system, Tmem16a transcripts were abundant in the ventricular neuroepithelium, whereas the other Tmem16 family members were readily detectable in the subventricular zone and differentiating fields. In the rostral spinal cord, Tmem16f expression was highest in the motor neuron area. In the developing eye, the highest amounts of Tmem16a transcripts were detected in the lens epithelium, hyaloid plexus and outer layer of the retina, while the other family members were abundant in the retinal ganglionic cell layer. Interestingly, throughout development, Tmem16a expression in the inner ear was robust and restricted to a subset of cells within the epithelium, which at later stages formed the organ of Corti. The stria vascularis was particularly rich in Tmem16a and Tmem16f mRNA. Other sites of Tmem16 expression included cranial nerve and dorsal root ganglia, meningeal precursors and the pituitary. Tmem16c and Tmem16f transcripts were also patent in the submandibular autonomic ganglia. A conspicuous feature of Tmem16a was its expression along the walls of blood vessels as well as in cells surrounding the trigeminal and olfactory nerve axons. In organs developing through epithelial-mesenchymal interactions, such as the palate, tooth and tongue, the above five Tmem16 family members showed interesting dynamic expression patterns as development proceeded. Finally and remarkably, osteoblasts and chondrocytes were particularly loaded with Tmem16a, Tmem16c and Tmem16f transcripts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy