SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1601 1848 OR L773:1601 183X "

Sökning: L773:1601 1848 OR L773:1601 183X

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Alsiö, Johan, et al. (författare)
  • Inverse association of high-fat diet preference and anxiety-like behavior : a putative role for urocortin 2
  • 2009
  • Ingår i: Genes, Brain and Behavior. - 1601-1848 .- 1601-183X. ; 8:2, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate whether the preference for a palatable high-fat diet (HFD) is associated with response to novelty and with anxiety-like behavior in rats and whether such fat preference correlates with gene expression of hypothalamic neuropeptides related to feeding. We subjected male rats to two tests of exploration of novel environments: the multivariate concentric square field (MCSF) and the elevated plus maze (EPM). The rats were then exposed to a 5-day test of preference for a palatable HFD versus reference diets. Messenger RNA (mRNA) levels of 21 neuropeptides were investigated by quantitative polymerase chain reaction. We found a strong positive correlation of HFD preference and open-arm activity in the EPM (% open-arm time, r(s) = 0.629, df = 26, P < 0.001). Thus, HFD preference was inversely associated with anxiety-like behavior. The same association was found for HFD preference and behavior in the MCSF (bridge entries, r(s) = 0.399, df = 23, P = 0.048). In addition, the HFD preference was positively correlated (r(s) = 0.433, df = 25, P = 0.021) with hypothalamic mRNA levels of urocortin 2 (Ucn 2). Moreover, behavior in the EPM was significantly correlated with expression levels of the receptor for Ucn 2, the corticotropin-releasing factor receptor 2, in the hypothalamus (r(s) = 0.382, df = 33, P = 0.022, pituitary (r(s) = 0.494, df = 31, P = 0.004) and amygdala (r(s) = 0.381, df = 30, P = 0.032). We conclude that preference for palatable HFD is inversely associated with anxiety and propose that Ucn 2 signaling may play a role in this association.
  •  
4.
  • Jöngren, Markus, 1981-, et al. (författare)
  • Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus)
  • 2010
  • Ingår i: Genes, Brain and Behavior. - : International and Neural genetics Society. - 1601-1848 .- 1601-183X. ; 9:7, s. 751-758
  • Tidskriftsartikel (refereegranskat)abstract
    • The biology of fear is central to animal welfare and hasbeen a major target for selection during domestication.Fear responses were studied in female red junglefowl(RJF), the ancestor of domesticated chickens. A totalof 31 females were tested in a ground predator test,an aerial predator test and a tonic immobility (TI)test, in order to assess their level of fearfulnessacross different situations. Two to six variables fromeach test were entered into a principal component(PC) analysis, which showed one major fearfulnesscomponent (explaining 27% of the variance). Based onthe PC scores, four high- and four low-fearful birds werethen selected for gene expression analysis. From eachof these birds, the midbrain region (including thalamus,hypothalamus, pituitary, mesencephalon, pons, nucleustractus solitarii and medulla oblongata), was collectedand global gene expression compared between groupsusing a 14k chicken cDNA microarray. There were 13significantly differentially expressed (DE) genes (basedonM > 1 andB > 0; FDR-adjusted P < 0.05) between thefearful and non-fearful females. Among the DE genes,we identified the neuroprotein Axin1, two potentialDNA/RNA regulating proteins and a retrotransposontranscript situated in a well-studied quantitative traitloci (QTL) region on chromosome 1, known to affectseveral domestication-related traits. The differentiallyexpressed genes may be part of a possible molecularmechanism controlling fear responses in fowl.
  •  
5.
  • Saetre, Peter, et al. (författare)
  • The genetic contribution to canine personality.
  • 2006
  • Ingår i: Genes, Brain and Behavior. - 1601-1848 .- 1601-183X. ; 5:3, s. 240-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The domestic dog may be exceptionally well suited for behavioral genetic studies owing to its population history and the striking behavior differences among breeds. To explore to what extent and how behavioral traits are transmitted between generations, heritabilities and genetic correlations for behavioral traits were estimated in a cohort containing over 10,000 behaviorally tested German shepherd and Rottweiler dogs. In both breeds, the pattern of co-inheritance was found to be similar for the 16 examined behavioral traits. Furthermore, over 50% of the additive genetic variation of the behavioral traits could be explained by one underlying principal component, indicating a shared genetic component behind most of the examined behavioral traits. Only aggression appears to be inherited independently of the other traits. The results support a genetic basis for a broad personality trait previously named shyness-boldness dimension, and heritability was estimated to be 0.25 in the two breeds. Therefore, breeds of dogs appear to constitute a valuable resource for behavioral genetic research on the normal behavioral differences in broad personality traits.
  •  
6.
  • Våge, J., et al. (författare)
  • Association of dopamine- and serotonin-related genes with canine aggression
  • 2010
  • Ingår i: Genes, Brain and Behavior. - 1601-1848 .- 1601-183X. ; 9:4, s. 372-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-directed canine aggression was studied using 50 aggressive and 81 non-aggressive dogs. We examined 62 single nucleotide polymorphisms (SNPs) occurring in or in the close vicinity of 16 neurotransmitter-related genes. Allelic associations with aggression were identified for DRD1, HTR1D, HTR2C and SLC6A1. Risk or protective haplotypes for aggressive behaviour based on 2-5 SNPs were identified. The frequency of aggressive dogs varied significantly between the haplotypes within loci and the odds ratios of aggression in dogs with risk haplotypes compared with protective haplotypes varied from 4.4 (HTR2C) to 9.0 (SLC6A1). A risk haplotype across the neurotransmitter receptor gene HTR1D harboured a non-synonymous SNP with a potential effect on protein function. We identified no haplotypes in complete association with the recorded phenotypes, supporting a complex inheritance of aggression.
  •  
7.
  •  
8.
  • Bloch, Natasha I., et al. (författare)
  • Different mating contexts lead to extensive rewiring of female brain coexpression networks in the guppy
  • 2021
  • Ingår i: Genes, Brain and Behavior. - : Wiley. - 1601-1848 .- 1601-183X. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the basis of behavior requires dissecting the complex waves of gene expression that underlie how the brain processes stimuli and produces an appropriate response. In order to determine the dynamic nature of the neurogenomic network underlying mate choice, we use transcriptome sequencing to capture the female neurogenomic response in two brain regions involved in sensory processing and decision-making under different mating and social contexts. We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are rewired when a female evaluates attractive and nonattractive males, greatly extending current single-gene approaches to assess changes in the broader gene regulatory network. We find the brain experiences a remarkable amount of network rewiring in the different mating and social contexts we tested. Further analysis indicates the network differences across contexts are associated with behaviorally relevant functions and pathways, particularly learning, memory and other cognitive functions. Finally, we identify the loci that display social context-dependent connections, revealing the basis of how relevant neurological and metabolic pathways are differentially recruited in distinct social contexts. More broadly, our findings contribute to our understanding of the genetics of mating and social behavior by identifying gene drivers behind behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.
  •  
9.
  • Brunberg, Emma, et al. (författare)
  • Brain gene expression differences are associated with abnormal tail biting behavior in pigs
  • 2013
  • Ingår i: Genes, Brain and Behavior. - : Wiley. - 1601-1848 .- 1601-183X. ; 12:2, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P<0.05) when tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy