SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1746 4811 "

Sökning: L773:1746 4811

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hofvander, Per, et al. (författare)
  • Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry
  • 2013
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Conclusions: We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester.
  •  
2.
  •  
3.
  • Takata, Naoki, et al. (författare)
  • A simple and efficient transient transformation for hybrid aspen (Populus tremula x P. tremuloides)
  • 2012
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 8, s. 30-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches. Results: We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter. Conclusions: The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.
  •  
4.
  • Hennigs, Lars (författare)
  • Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays
  • 2012
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microarrays are routine tools for transcript profiling, and genomic tiling arrays such as the Arabidopsis AGRONOMICS1 arrays have been found to be highly suitable for such experiments because changes in genome annotation can be easily integrated at the data analysis level. In a transcript profiling experiment, RNA labeling is a critical step, most often initiated by oligo-dT-primed reverse transcription. Although this has been found to be a robust and reliable method, very long transcripts or non-polyadenylated transcripts might be labeled inefficiently. In this study, we first provide data handling methods to analyze AGRONOMICS1 tiling microarrays based on the TAIR10 genome annotation. Second, we describe methods to easily quantify antisense transcripts on such tiling arrays. Third, we test a random-primed RNA labeling method, and find that on AGRONOMICS1 arrays this method has similar general performance as the conventional oligo-dT-primed method. In contrast to the latter, however, the former works considerably better for long transcripts and for non-polyadenylated transcripts such as found in mitochondria and plastids. We propose that researchers interested in organelle function use the random-primed method to unleash the full potential of genomic tiling arrays.
  •  
5.
  • Bartusch, Kai, et al. (författare)
  • Cut and paste: temperature-enhanced cotyledon micrografting for Arabidopsis thaliana seedlings
  • 2020
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cotyledon micrografting represents a useful tool for studying the central role of cotyledons during early plant development, especially their interplay with other plant organs with regard to long distance transport. While hypocotyl micrografting methods are well-established, cotyledon micrografting is still inefficient. By optimizing cotyledon micrografting, we aim for higher success rates and increased throughput in the model species Arabidopsis thaliana. Results We established a cut and paste cotyledon surgery procedure on a flat and solid but moist surface which improved handling of small seedlings. By applying a specific cutting and joining pattern, throughput was increased up to 40 seedlings per hour. The combination of short-day photoperiods and low light intensities for germination and long days plus high light intensities, elevated temperature and vertical plate positioning after grafting significantly increased 'ligation' efficiency. In particular high temperatures affected success rates favorably. Altogether, we achieved up to 92% grafting success in A. thaliana. Reconnection of vasculature was demonstrated by transport of a vasculature-specific dye across the grafting site. Phloem and xylem reconnection were completed 3-4 and 4-6 days after grafting, respectively, in a temperature-dependent manner. We observed that plants with grafted cotyledons match plants with intact cotyledons in biomass production and rosette development. Conclusions This cut and paste cotyledon-to-petiole micrografting protocol simplifies the handling of plant seedlings in surgery, increases the number of grafted plants per hour and greatly improves success rates for A. thaliana seedlings. The developed cotyledon micrografting method is also suitable for other plant species of comparable size.
  •  
6.
  • Brunoni, Federica, et al. (författare)
  • A bacterial assay for rapid screening of IAA catabolic enzymes
  • 2019
  • Ingår i: Plant Methods. - : BioMed Central (BMC). - 1746-4811. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plants rely on concentration gradients of the native auxin, indole-3-acetic acid (IAA), to modulate plant growth and development. Both metabolic and transport processes participate in the dynamic regulation of IAA homeostasis. Free IAA levels can be reduced by inactivation mechanisms, such as conjugation and degradation. IAA can be conjugated via ester linkage to glucose, or via amide linkage to amino acids, and degraded via oxidation. Members of the UDP glucosyl transferase (UGT) family catalyze the conversion of IAA to indole-3-acetyl-1-glucosyl ester (IAGlc); by contrast, IAA is irreversibly converted to indole-3-acetyl-L-aspartic acid (IAAsp) and indole-3-acetyl glutamic acid (IAGlu) by Group II of the GRETCHEN HAGEN3 (GH3) family of acyl amido synthetases. Dioxygenase for auxin oxidation (DAO) irreversibly oxidizes IAA to oxindole-3-acetic acid (oxIAA) and, in turn, oxIAA can be further glucosylated to oxindole-3-acetyl-1-glucosyl ester (oxIAGlc) by UGTs. These metabolic pathways have been identified based on mutant analyses, in vitro activity measurements, and in planta feeding assays. In vitro assays for studying protein activity are based on producing Arabidopsis enzymes in a recombinant form in bacteria or yeast followed by recombinant protein purification. However, the need to extract and purify the recombinant proteins represents a major obstacle when performing in vitro assays.Results: In this work we report a rapid, reproducible and cheap method to screen the enzymatic activity of recombinant proteins that are known to inactivate IAA. The enzymatic reactions are carried out directly in bacteria that produce the recombinant protein. The enzymatic products can be measured by direct injection of a small supernatant fraction from the bacterial culture on ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UHPLC–ESI-MS/MS). Experimental procedures were optimized for testing the activity of different classes of IAA-modifying enzymes without the need to purify recombinant protein.Conclusions: This new method represents an alternative to existing in vitro assays. It can be applied to the analysis of IAA metabolites that are produced upon supplementation of substrate to engineered bacterial cultures and can be used for a rapid screening of orthologous candidate genes from non-model species.
  •  
7.
  • Charras, Quentin, et al. (författare)
  • An efficient protocol for extracting thylakoid membranes and total leaf proteins from Posidonia oceanica and other polyphenol-rich plants
  • 2024
  • Ingår i: Plant Methods. - : BMC. - 1746-4811. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe extraction of thylakoids is an essential step in studying the structure of photosynthetic complexes and several other aspects of the photosynthetic process in plants. Conventional protocols have been developed for selected land plants grown in controlled conditions. Plants accumulate defensive chemical compounds such as polyphenols to cope with environmental stresses. When the polyphenol levels are high, their oxidation and cross-linking properties prevent thylakoid extraction. ResultsIn this study, we developed a method to counteract the hindering effects of polyphenols by modifying the grinding buffer with the addition of both vitamin C (VitC) and polyethylene glycol (PEG4000). This protocol was first applied to the marine plant Posidonia oceanica and then extended to other plants synthesizing substantial amounts of polyphenols, such as Quercus pubescens (oak) and Vitis vinifera (grapevine). Native gel analysis showed that photosynthetic complexes (PSII, PSI, and LHCII) can be extracted from purified membranes and fractionated comparably to those extracted from the model plant Arabidopsis thaliana. Moreover, total protein extraction from frozen P. oceanica leaves was also efficiently carried out using a denaturing buffer containing PEG and VitC. ConclusionsOur work shows that the use of PEG and VitC significantly improves the isolation of native thylakoids, native photosynthetic complexes, and total proteins from plants containing high amounts of polyphenols and thus enables studies on photosynthesis in various plant species grown in natural conditions.
  •  
8.
  • Dedicova, Beata, et al. (författare)
  • Protocol development for somatic embryogenesis, SSR markers and genetic modification of Stipagrostis pennata (Trin.) De Winter
  • 2021
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundStipagrostis pennata (Trin.) De Winter is an important species for fixing sand in shifting and semi-fixed sandy lands, for grazing, and potentially as a source of lignocellulose fibres for pulp and paper industry. The seeds have low viability, which limits uses for revegetation. Somatic embryogenesis offers an alternative method for obtaining large numbers of plants from limited seed sources.ResultsA protocol for plant regeneration from somatic embryos of S. pennata was developed. Somatic embryogenesis was induced on Murashige & Skoog (MS) medium supplemented with 3 mg.L-1 2,4-D subsequently shoots were induced on MS medium and supplemented with 5 mg.L-1 zeatin riboside. The highest shoots induction was obtained when embryogenic callus derived from mature embryos (96%) in combination with MS filter-sterilized medium was used from Khuzestan location. The genetic stability of regenerated plants was analysed using ten simple sequence repeats (SSR) markers from S. pennata which showed no somaclonal variation in regenerated plants from somatic embryos of S. pennata. The regenerated plants of S. pennata showed genetic stability without any somaclonal variation for the four pairs of primers that gave the expected amplicon sizes. This data seems very reliable as three of the PCR products belonged to the coding region of the genome.Furthermore, stable expression of GUS was obtained after Agrobacterium-mediated transformation using a super binary vector carried by a bacterial strain LBA4404.ConclusionTo our knowledge, the current work is the first attempt to develop an in vitro protocol for somatic embryogenesis including the SSR marker analyses of regenerated plants, and Agrobacterium-mediated transformation of S. pennata that can be used for its large-scale production for commercial purposes.
  •  
9.
  • Guan, Rui (författare)
  • Isolation, purification and PEG-mediated transient expression of mesophyll protoplasts in Camellia oleifera
  • 2022
  • Ingår i: Plant Methods. - : Springer Science and Business Media LLC. - 1746-4811. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Camellia oleifera (C. oleifera) is a woody edible oil crop of great economic importance. Because of the lack of modern biotechnology research, C. oleifera faces huge challenges in both breeding and basic research. The protoplast and transient transformation system plays an important role in biological breeding, plant regeneration and somatic cell fusion. The objective of this present study was to develop a highly efficient protocol for isolating and purifying mesophyll protoplasts and transient transformation of C. oleifera. Several critical factors for mesophyll protoplast isolation from C. oleifera, including starting material (leaf age), pretreatment, enzymatic treatment (type of enzyme, concentration and digestion time), osmotic pressure and purification were optimized. Then the factors affecting the transient transformation rate of mesophyll protoplasts such as PEG molecular weights, PEG4000 concentration, plasmid concentration and incubation time were explored.Results: The in vitro grown seedlings of C. oleifera 'Huashuo' were treated in the dark for 24 h, then the 1st to 2nd true leaves were picked and vacuumed at - 0.07 MPa for 20 min. The maximum yield (3.5 x 10(7)/g.W) and viability (90.9%) of protoplast were reached when the 1st to 2nd true leaves were digested in the enzymatic solution containing1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10 and 0.25% (w/v) Snailase and 0.4 M mannitol for 10 h. Moreover, the protoplast isolation method was also applicable to the other two cultivars, the protoplast yield for 'TXP14' and 'DP47' was 1.1 x 10(7)/g.FW and 2.6 x 10(7)/g. FW, the protoplast viability for 'TXP14' and 'DP47' was 90.0% and 88.2%. The purification effect was the best when using W buffer as a cleaning agent by centrifugal precipitation. The maximum transfection efficiency (70.6%) was obtained with the incubation of the protoplasts with 15 mu g plasmid and 40% PEG4000 for 20 min.Conclusion: In summary, a simple and efficient system for isolation and transient transformation of C. oleifera mesophyll protoplast is proposed, which is of great significance in various aspects of C. oleifera research, including the study of somatic cell fusion, genome editing, protein function, signal transduction, transcriptional regulation and multi-omics analyses.
  •  
10.
  • Karady, Michal, et al. (författare)
  • Profiling of 1-aminocyclopropane-1-carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography-tandem mass spectrometry
  • 2024
  • Ingår i: Plant Methods. - : BioMed Central (BMC). - 1746-4811. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Gaseous phytohormone ethylene levels are directly influenced by the production of its immediate non-volatile precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Owing to the strongly acidic character of the ACC molecule, its quantification has been difficult to perform. Here, we present a simple and straightforward validated method for accurate quantification of not only ACC levels, but also major members of other important phytohormonal classes – auxins, cytokinins, jasmonic acid, abscisic acid and salicylic acid from the same biological sample.Results: The presented technique facilitates the analysis of 15 compounds by liquid chromatography coupled with tandem mass spectrometry. It was optimized and validated for 10 mg of fresh weight plant material. The extraction procedure is composed of a minimal amount of necessary steps. Accuracy and precision were the basis for evaluating the method, together with process efficiency, recovery and matrix effects as validation parameters. The examined compounds comprise important groups of phytohormones, their active forms and some of their metabolites, including six cytokinins, four auxins, two jasmonates, abscisic acid, salicylic acid and 1-aminocyclopropane-1-carboxylic acid. The resulting method was used to examine their contents in selected Arabidopsis thaliana mutant lines.Conclusion: This profiling method enables a very straightforward approach for indirect ethylene study and explores how it interacts, based on content levels, with other phytohormonal groups in plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy