SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 0132 "

Sökning: L773:1748 0132

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Li, Yanying, et al. (författare)
  • A D-peptide ligand of neuropeptide Y receptor Y-1 serves as nanocarrier traversing of the blood brain barrier and targets glioma
  • 2022
  • Ingår i: Nano Today. - : Elsevier. - 1748-0132 .- 1878-044X. ; 44
  • Tidskriftsartikel (refereegranskat)abstract
    • Diseases of the central nervous system (CNS) are challenging for drug treatment because the blood-brain barrier (BBB) restricts entry of drugs into the brain tissue. Therefore, strategies for drug transport across the BBB are an important component in development of CNS drug therapies. Here, a D-amino acid ligand of the neuropeptide Y (NPY) receptor Y1 is described, (D)[Asn(28), Pro(30), Trp(32)]-DNPY (25-36) (termed DAPT), with 2.5 times higher number of hydrogen bonds interacting with the receptor, based on docking into a structural model, than the corresponding peptide with standard L-amino acids (LAPT). Using in vitro BBB models, in vivo healthy mice with intact BBB, and U87-MG orthotopic tumor-bearing mice, we demonstrate that DAPT exhibits significantly higher ability than LAPT to serve as nanocarrier across the BBB and specifically targets gliomas. Using DAPT nanomicelles loaded with IRDye780, it was possible to achieve excellent photothermal therapeutic and photoacoustic cancer imaging. Thus, this study demonstrates the importance of ligand stability and affinity in Y1 receptor-mediated transcytosis and paves the way for versatile brain tumor imaging and therapy using nanomicelles.
  •  
8.
  •  
9.
  • Losch, Pit, et al. (författare)
  • Colloidal nanocrystals for heterogeneous catalysis
  • 2019
  • Ingår i: Nano Today. - : Elsevier. - 1748-0132 .- 1878-044X. ; 24, s. 15-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalytic materials are an essential component of the chemical industry. They find applications in everything from fine chemical manufacturing to greenhouse gas mitigation. They are indispensable for developing a sustainable future. Their development has been continuous, from early trial and error efforts to the first fundamental insights gained through surface science, to modern in-situ characterization and computational predictions. The accumulation of knowledge on the working principles of catalytic surfaces allowed designing and producing better systems with improved performance. Even though tremendous progress has been made thanks to surface science techniques, these studies are usually performed under ultra-high vacuum and are therefore limited in their applicability to more relevant industrial conditions. The control over size, shape and composition in colloidal nanocrystals makes them formidable precursors for model heterogeneous catalysts. These model systems enable linking the insights from surface science studies via in-situ and operando studies to realistic catalytic reaction conditions. In this review, colloidal nanocrystals are presented as powerful building blocks for catalytic materials in the quest for fundamental understanding. A review of the principal methods to produce colloidal nanocrystals with a high level of control is reported, complemented by procedures for how to prepare active catalysts from these particles. Examples and guidelines for the catalytic applications of these materials revolve around the three guiding objectives in catalysis science: activity, selectivity and stability. This work will be limited to examples of this colloidal approach in the areas of thermal, electro- and photocatalysis. The exposed approaches can be used and extended to many other areas of catalysis science, thus providing a new avenue to explore fundamentals and applications of catalytic materials.
  •  
10.
  • Otnes, Gaute, et al. (författare)
  • Towards high efficiency nanowire solar cells
  • 2017
  • Ingår i: Nano Today. - : Elsevier BV. - 1748-0132. ; 12, s. 31-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires are a class of materials recently gaining increasing interest for solar cell applications. In this article we review the development of the field with a special focus on the III-V materials due to their potential to reach high power conversion efficiencies. After introducing basic concepts of nanowire synthesis, we discuss important aspects of nanowire design for high power conversion efficiencies; first in terms of light absorption, then in terms of charge carrier separation and collection. Further, we examine methods to assess and understand the materials quality and the solar cell performance. We end the review by a discussion of strategies and challenges in achieving efficiencies above the Shockley-Queisser limit, and the potential for cost efficient production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy