SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1754 8403 OR L773:1754 8411 "

Sökning: L773:1754 8403 OR L773:1754 8411

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auer, JMT, et al. (författare)
  • Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy
  • 2020
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
  •  
2.
  • Berger, J, et al. (författare)
  • Loss of Tropomodulin4 in the zebrafish mutant träge causes cytoplasmic rod formation and muscle weakness reminiscent of nemaline myopathy
  • 2014
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 7:12, s. 1407-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the nine genes associated with the disease, 5 encode for components of striated muscle sarcomeres. In a genetic zebrafish screen the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganized and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of trg combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, although actin monomers polymerise to form thin filaments in the skeletal muscle of tmod4trg mutants, thin filaments often appeared to be dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion, and early death. Myofibrils of tmod4trg mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones, and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods together with the reactivity of rods with phalloidin and an antibody against actinin is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4trg mutants. Although Tropomodulin4 has not been associated with myopathy, the results presented here implicate TMOD4 as a novel candidate for unresolved nemaline myopathies and suggest that the tmod4trg mutant will be a valuable tool to study human muscle disorders.
  •  
3.
  • Blundell, JE, et al. (författare)
  • Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation
  • 2012
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 5:5, s. 608-613
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.
  •  
4.
  • Chand, Damini, 1986, et al. (författare)
  • Cell culture and Drosophila model systems define three classes of anaplastic lymphoma kinase mutations in neuroblastoma.
  • 2013
  • Ingår i: Disease models & mechanisms. - Cambridge, UK : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 6:2, s. 373-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a childhood extracranial solid tumor which is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly required characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs). Here, we report the identification and characterisation of two novel neuroblastoma ALK mutations (A1099T and 1464STOP) which we have investigated together with several previously reported but uncharacterised ALK mutations (T1087I, D1091N, T1151M, M1166R, F1174I and A1234T). In order to understand the potential role of these ALK mutations in neuroblastoma progression we have employed cell culture based systems together with the model organism Drosophila as a readout for ligand-independent activity. Mutation of ALK at position F1174I generates a gain-of-function receptor capable of activating intracellular targets, such as ERK (extracellular signal regulated kinase) and STAT3 (signal transducer and activator of transcription 3) in a ligand independent manner. Analysis of these previously uncharacterised ALK mutants and comparison with ALK(F1174) mutants suggests that ALK mutations observed in neuroblastoma fall into three classes. These are: (i) gain-of-function ligand independent mutations such as ALK(F1174), (ii) kinase-dead ALK mutants, e.g. ALK(I1250T)(Schonherr et al 2011a) or (iii) ALK mutations which are ligand-dependent in nature. Irrespective of the nature of the observed ALK mutants, in every case the activity of the mutant ALK receptors could be abrogated by the ALK inhibitor crizotinib (PF-02341066, Xalkori), albeit with differing levels of sensitivity.
  •  
5.
  • Chatei, B, et al. (författare)
  • Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model
  • 2021
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death.
  •  
6.
  • Crivello, M., et al. (författare)
  • Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model
  • 2019
  • Ingår i: Disease Models and Mechanisms. - : Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS.
  •  
7.
  • Dahl-Halvarsson, Martin, et al. (författare)
  • Impaired muscle morphology in a Drosophila model of myosin storage myopathy was supressed by overexpression of an E3 ubiquitin ligase
  • 2020
  • Ingår i: Disease Models & Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Myosin is vital for body movement and heart contractility. Mutations in MYH7, encoding slow/beta-cardiac myosin heavy chain, are an important cause of hypertrophic and dilated cardiomyopathy, as well as skeletal muscle disease. A dominant missense mutation (R1845W) in MYH7 has been reported in several unrelated cases of myosin storage myopathy. We have developed a Drosophila model for a myosin storage myopathy in order to investigate the dose-dependent mechanisms underlying the pathological roles of the R1845W mutation. This study shows that a higher expression level of the mutated allele is concomitant with severe impairment of muscle function and progressively disrupted muscle morphology. The impaired muscle morphology associated with the mutant allele was suppressed by expression of Thin (herein referred to as Abba), an E3 ubiquitin ligase. This Drosophila model recapitulates pathological features seen in myopathy patients with the R1845W mutation and severe ultrastructural abnormalities, including extensive loss of thick filaments with selective A-band loss, and preservation of I-band and Z-disks were observed in indirect flight muscles of flies with exclusive expression of mutant myosin. Furthermore, the impaired muscle morphology associated with the mutant allele was suppressed by expression of Abba. These findings suggest that modification of the ubiquitin proteasome system may be beneficial in myosin storage myopathy by reducing the impact of MYH7 mutation in patients.
  •  
8.
  • Diaz, Oscar E., et al. (författare)
  • Perfluorooctanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation
  • 2021
  • Ingår i: DMM Disease Models and Mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 14:12, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal epithelium is continuously exposed to deleterious environmental factors that might cause aberrant immune responses leading to inflammatory disorders. However, what environmental factors might contribute to disease are poorly understood. Here, to overcome the lack of in vivo models suitable for screening of environmental factors, we used zebrafish reporters of intestinal inflammation. Using zebrafish, we interrogated the immunomodulatory effects of polyfluoroalkyl substances, which have been positively associated with ulcerative colitis incidence. Exposure to perfluorooctanesulfonic acid (PFOS) during 2,4,6-trinitro-benzene sulfonic acid (TNBS)-induced inflammation enhanced the expression of proinflammatory cytokines as well as neutrophil recruitment to the intestine of zebrafish larvae, which was validated in the TNBS-induced colitis mouse model. Moreover, PFOS exposure in mice undergoing colitis resulted in neutrophil-dependent increased intestinal permeability and enhanced PFOS translocation into the circulation. This was associated with a neutrophil-dependent expansion of systemic CD4+ T cells. Thus, our results indicate that PFOS worsens inflammation-induced intestinal damage with disruption of T-cell homeostasis beyond the gut and provides a novel in vivo toolbox to screen for pollutants affecting intestinal homeostasis.
  •  
9.
  • Fernius, Josefin, et al. (författare)
  • Bar-coding neurodegeneration: identifying subcellular effects of human neurodegenerative disease proteins using Drosophila leg neurons
  • 2017
  • Ingår i: Disease Models and Mechanisms. - : COMPANY OF BIOLOGISTS LTD. - 1754-8403 .- 1754-8411. ; 10:8, s. 1027-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic, biochemical and histological studies have identified a number of different proteins as key drivers of human neurodegenerative diseases. Although different proteins are typically involved in different diseases, there is also considerable overlap. Addressing disease protein dysfunction in an in vivo neuronal context is often time consuming and requires labor-intensive analysis of transgenic models. To facilitate the rapid, cellular analysis of disease protein dysfunction, we have developed a fruit fly (Drosophila melanogaster) adult leg neuron assay. We tested the robustness of 41 transgenic fluorescent reporters and identified a number that were readily detected in the legs and could report on different cellular events. To test these reporters, we expressed a number of human proteins involved in neurodegenerative disease, in both their mutated and wild-type versions, to address the effects on reporter expression and localization. We observed strikingly different effects of the different disease proteins upon the various reporters with, for example, A beta(1-42) being highly neurotoxic, tau, parkin and HTT128Q affecting mitochondrial distribution, integrity or both, and A beta(1-42), tau, HTT128Q and ATX1(82Q) affecting the F-actin network. This study provides proof of concept for using the Drosophila adult leg for inexpensive and rapid analysis of cellular effects of neurodegenerative disease proteins in mature neurons.
  •  
10.
  • Follwaczny, Philipp, et al. (författare)
  • Pumilio2-deficient mice show a predisposition for epilepsy.
  • 2017
  • Ingår i: Disease Models and Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 10:11, s. 1333-1342
  • Tidskriftsartikel (refereegranskat)abstract
    • Epilepsy is a neurological disease that is caused by abnormal hypersynchronous activities of neuronal ensembles leading to recurrent and spontaneous seizures in human patients. Enhanced neuronal excitability and a high level of synchrony between neurons seem to trigger these spontaneous seizures. The molecular mechanisms, however, regarding the development of neuronal hyperexcitability and maintenance of epilepsy are still poorly understood. Here, we show that pumilio RNA-binding family member 2 (Pumilio2; Pum2) plays a role in the regulation of excitability in hippocampal neurons of weaned and 5-month-old male mice. Almost complete deficiency of Pum2 in adult Pum2 gene-trap mice (Pum2 GT) causes misregulation of genes involved in neuronal excitability control. Interestingly, this finding is accompanied by the development of spontaneous epileptic seizures in Pum2 GT mice. Furthermore, we detect an age-dependent increase in Scn1a (Nav1.1) and Scn8a (Nav1.6) mRNA levels together with a decrease in Scn2a (Nav1.2) transcript levels in weaned Pum2 GT that is absent in older mice. Moreover, field recordings of CA1 pyramidal neurons show a tendency towards a reduced paired-pulse inhibition after stimulation of the Schaffer-collateral-commissural pathway in Pum2 GT mice, indicating a predisposition to the development of spontaneous seizures at later stages. With the onset of spontaneous seizures at the age of 5 months, we detect increased protein levels of Nav1.1 and Nav1.2 as well as decreased protein levels of Nav1.6 in those mice. In addition, GABA receptor subunit alpha-2 (Gabra2) mRNA levels are increased in weaned and adult mice. Furthermore, we observe an enhanced GABRA2 protein level in the dendritic field of the CA1 subregion in the Pum2 GT hippocampus. We conclude that altered expression levels of known epileptic risk factors such as Nav1.1, Nav1.2, Nav1.6 and GABRA2 result in enhanced seizure susceptibility and manifestation of epilepsy in the hippocampus. Thus, our results argue for a role of Pum2 in epileptogenesis and the maintenance of epilepsy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
Typ av publikation
tidskriftsartikel (38)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
aut (5)
Orešič, Matej, 1967- (3)
Martinsson, Tommy, 1 ... (2)
Palmer, Ruth H., 197 ... (2)
Carlsson, Leif (2)
Ollila, S (2)
visa fler...
Haglund, C (2)
Li, B. (1)
Ochala, Julien (1)
Svensson, M. (1)
Lerm, Maria (1)
Zetterberg, Henrik, ... (1)
Carlsson, T (1)
Rayner, M. (1)
Tajsharghi, Homa (1)
Lima, A (1)
Johansson, E (1)
Kogner, Per (1)
Maris, John (1)
Ejeskär, Katarina, 1 ... (1)
Linse, Sara (1)
Guan, Jikui (1)
Umapathy, Ganesh (1)
Johansson, Jan (1)
Kjell, J (1)
Vukojevic, V (1)
Paulsson, Kajsa (1)
Gouignard, Nadège (1)
Maccarana, Marco (1)
Pera, Edgar (1)
Nilsson, M (1)
Svensson, Mattias (1)
Norrby-Teglund, A (1)
Villablanca, EJ (1)
Winblad, Bengt (1)
Ahlgren, Ulf (1)
El Wakil, Abeer (1)
Schott, J. M. (1)
Malmström, Anders (1)
Toombs, J. (1)
Heslegrave, A. (1)
Olsson, Jan (1)
Palmer, Ruth H (1)
Elgh, Fredrik (1)
Krais, Annette M (1)
Hillen, A (1)
Thor, Stefan (1)
Hagstrom, J (1)
Hagström, J (1)
Vanlandewijck, Micha ... (1)
visa färre...
Lärosäte
Karolinska Institutet (20)
Göteborgs universitet (6)
Umeå universitet (5)
Uppsala universitet (4)
Lunds universitet (4)
Örebro universitet (3)
visa fler...
Linköpings universitet (3)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Högskolan i Skövde (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (6)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy