SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1755 8794 "

Sökning: L773:1755 8794

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Anna, et al. (författare)
  • Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types. METHODS: Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13). RESULTS: This study revealed that e.g., the t(12;21) [ETV6-RUNX1] subtype of ALL and the t(15;17) [PML-RARA] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/MLL subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to approximately 100 gene sets derived from normal and malignant tissues. CONCLUSIONS: This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.
  •  
2.
  • Heidenblad, Markus, et al. (författare)
  • Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors.
  • 2008
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 1:Jan 31
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Urothelial carcinoma (UC) is characterized by nonrandom chromosomal aberrations, varying from one or a few changes in early-stage and low-grade tumors, to highly rearranged karyotypes in muscle-invasive lesions. Recent array-CGH analyses have shed further light on the genomic changes underlying the neoplastic development of UC, and have facilitated the molecular delineation amplified and deleted regions to the level of specific candidate genes. In the present investigation we combine detailed genomic information with expression information to identify putative target genes for genomic amplifications. METHODS: We analyzed 38 urothelial carcinomas by whole-genome tiling resolution array-CGH and high density expression profiling to identify putative target genes in common genomic amplifications. When necessary expression profiling was complemented with Q-PCR of individual genes. RESULTS: Three genomic segments were frequently and exclusively amplified in high grade tumors; 1q23, 6p22 and 8q22, respectively. Detailed mapping of the 1q23 segment showed a heterogeneous amplification pattern and no obvious commonly amplified region. The 6p22 amplicon was defined by a 1.8 Mb core region present in all amplifications, flanked both distally and proximally by segments amplified to a lesser extent. By combining genomic profiles with expression profiles we could show that amplification of E2F3, CDKAL1, SOX4, and MBOAT1 as well as NUP153, AOF1, FAM8A1 and DEK in 6p22 was associated with increased gene expression. Amplification of the 8q22 segment was primarily associated with YWHAZ (14-3-3-zeta) and POLR2K over expression. The possible importance of the YWHA genes in the development of urothelial carcinomas was supported by another recurrent amplicon paralogous to 8q22, in 2p25, where increased copy numbers lead to enhanced expression of YWHAQ (14-3-3-theta). Homozygous deletions were identified at 10 different genomic locations, most frequently affecting CDKN2A/CDKN2B in 9p21 (32%). Notably, the latter occurred mutually exclusive with 6p22 amplifications. CONCLUSION: The presented data indicates 6p22 as a composite amplicon with more than one possible target gene. The data also suggests that amplification of 6p22 and homozygous deletions of 9p21 may have complementary roles. Furthermore, the analysis of paralogous regions that showed genomic amplification indicated altered expression of YWHA (14-3-3) genes as important events in the development of UC.
  •  
3.
  • Parikh, Hemang, et al. (författare)
  • Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus
  • 2009
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have emerged as a powerful approach for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms (SNPs) from GWAS for further replication in different population. Several recent studies have shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans) genomic locations by different mechanisms such as altering rate of transcription or splicing or transcript stability. Methods: To prioritize SNPs from GWAS, we combined results from two GWAS related to T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal muscle of individuals with or without T2DM or animal models thereof to identify T2DM susceptibility loci. Results: We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243 genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115 differentially expressed in publicly available gene expression profiling data. Notably five of them, IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated with T2DM in different populations. To provide further validation of our approach, we reversed the approach and started with 26 known SNPs associated with T2DM and related traits. We could show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant expression in T2DM from the gene expression profiling studies. Conclusions: Utilizing of gene expression profiling data from different tissues of individuals with or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS for further replication studies.
  •  
4.
  • Plunkett, Jevon, et al. (författare)
  • Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance. Methods: We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292 control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers. Results: Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C activity. Conclusions: Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels of prostaglandins, which are known to regulate labor.
  •  
5.
  • Staaf, Johan, et al. (författare)
  • Relation between smoking history and gene expression profiles in lung adenocarcinomas
  • 2012
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers' lung carcinomas remain to a large extent unclear. Methods: Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets. Results: Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking. Conclusions: Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
  •  
6.
  • Thorell, Kaisa, 1983, et al. (författare)
  • Verification of genes differentially expressed in neuroblastoma tumours : A study of potential tumour suppressor genes
  • 2009
  • Ingår i: BMC Medical Genomics. - : BioMed Central (BMC). - 1755-8794. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified.Methods: In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples.Results: By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, ATBF1, CACNA2D3, CNTNAP2, FUSIP1, GNB1, SLC35E2, and TFAP2B. The gene that showed the highest fold change in the TLDA analysis, POU4F2, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene CNTNAP2 that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of POU4F2 and CNTNAP2 showed no genetic alterations that could explain a lower expression in unfavourable NB tumours.Conclusion: Through two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, CACNA2D3, GNB1, SLC35E2, and TFAP2B, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic. 
  •  
7.
  • Sboner, Andrea, et al. (författare)
  • Molecular sampling of prostate cancer: a dilemma for predicting disease progression
  • 2010
  • Ingår i: BMC Medical Genomics. - London, United Kingdom : BioMed Central. - 1755-8794. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. Conclusions: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.
  •  
8.
  • Beck, Dominik, et al. (författare)
  • Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes
  • 2011
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 4:19, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMyelodysplastic Syndromes (MDSS) are pre-leukemic disorders with increasing incident rates worldwide, but very limited treatment options. Little is known about small regulatory RNAs and how they contribute to pathogenesis, progression and transcriptome changes in MDS.MethodsPatients' primary marrow cells were screened for short RNAs (RNA-seq) using next generation sequencing. Exon arrays from the same cells were used to profile gene expression and additional measures on 98 patients obtained. Integrative bioinformatics algorithms were proposed, and pathway and ontology analysis performed.ResultsIn low-grade MDS, observations implied extensive post-transcriptional regulation via microRNAs (miRNA) and the recently discovered Piwi interacting RNAs (piRNA). Large expression differences were found for MDS-associated and novel miRNAs, including 48 sequences matching to miRNA star (miRNA*) motifs. The detected species were predicted to regulate disease stage specific molecular functions and pathways, including apoptosis and response to DNA damage. In high-grade MDS, results suggested extensive post-translation editing via transfer RNAs (tRNAs), providing a potential link for reduced apoptosis, a hallmark for this disease stage. Bioinformatics analysis confirmed important regulatory roles for MDS linked miRNAs and TFs, and strengthened the biological significance of miRNA*. The "RNA polymerase II promoters" were identified as the tightest controlled biological function. We suggest their control by a miRNA dominated feedback loop, which might be linked to the dramatically different miRNA amounts seen between low and high-grade MDS.DiscussionThe presented results provide novel findings that build a basis of further investigations of diagnostic biomarkers, targeted therapies and studies on MDS pathogenesis.
  •  
9.
  • Bysani, Madhu Sudhan Reddy, et al. (författare)
  • ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer
  • 2013
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 6, s. 50-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Steatohepatitis occurs in alcoholic liver disease and may progress to liver cirrhosis and hepatocellular carcinoma. Its molecular pathogenesis is to a large degree unknown. Histone modifications play a key role in transcriptional regulations as marks for silencing and activation of gene expression and as marks for functional elements. Many transcription factors (TFs) are crucial for the control of the genes involved in metabolism, and abnormality in their function may lead to disease. Methods: We performed ChIP-seq of the histone modifications H3K4me1, H3K4me3 and H3K27ac and a candidate transcription factor (USF1) in liver tissue from patients with steatohepatitis and normal livers and correlated results to mRNA-expression and genotypes. Results: We found several regions that are differentially enriched for histone modifications between disease and normal tissue, and qRT-PCR results indicated that the expression of the tested genes strongly correlated with differential enrichment of histone modifications but is independent of USF1 enrichment. By gene ontology analysis of differentially modified genes we found many disease associated genes, some of which had previously been implicated in the etiology of steatohepatitis. Importantly, the genes associated to the strongest histone peaks in the patient were over-represented in cancer specific pathways suggesting that the tissue was on a path to develop to cancer, a common complication to the disease. We also found several novel SNPs and GWAS catalogue SNPs that are candidates to be functional and therefore needs further study. Conclusion: In summary we find that analysis of chromatin features in tissue samples provides insight into disease mechanisms.
  •  
10.
  • Clancy, Trevor, et al. (författare)
  • Immunological network signatures of cancer progression and survival.
  • 2011
  • Ingår i: BMC medical genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. METHODS: To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. RESULTS: The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. CONCLUSIONS: The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
Typ av publikation
tidskriftsartikel (44)
Typ av innehåll
refereegranskat (44)
Författare/redaktör
Zhang, J. (2)
Song, J. (2)
Groop, Leif (2)
Liedberg, Fredrik (2)
Sonnhammer, Erik L L (2)
Xia, L. (2)
visa fler...
Jonasson, Jon (1)
Carén, Helena, 1979 (1)
Chen, H. (1)
Cheng, Y. (1)
Li, L. (1)
Wang, T. (1)
Zhang, F. (1)
Xu, N. (1)
Wang, Y. (1)
Jönsson, Per (1)
Betsholtz, C (1)
Zhang, X. -L. (1)
Lenner, Per (1)
Johansson, Robert (1)
Helleday, Thomas (1)
Nielsen, Jens B, 196 ... (1)
Lyssenko, Valeriya (1)
Cavelier, Lucia (1)
Landén, Mikael, 1966 (1)
Jonsson, Lina, 1982 (1)
Abel, Frida, 1974 (1)
Kogner, Per (1)
Nilsson, Staffan, 19 ... (1)
Martinsson, Tommy, 1 ... (1)
Jacobsson, Bo, 1960 (1)
Bjorkegren, JLM (1)
Edén, Patrik (1)
Fioretos, Thoas (1)
Eggermont, Alexander (1)
Lind, Lars (1)
Sjödahl, Gottfrid (1)
Gudjonsson, Sigurdur (1)
Adami, Hans Olov (1)
Tandre, Karolina (1)
Arner, Peter (1)
Schiöth, Helgi B. (1)
Fellman, Vineta (1)
Lundeberg, Joakim (1)
Andersson, Anna (1)
Kere, Juha (1)
Melander, Olle (1)
Johansson, Jan-Erik (1)
Axelsson, Tomas (1)
Lundin, Samuel B, 19 ... (1)
visa färre...
Lärosäte
Karolinska Institutet (16)
Uppsala universitet (13)
Lunds universitet (12)
Göteborgs universitet (8)
Linköpings universitet (4)
Stockholms universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
Jönköping University (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy