SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1756 0381 "

Sökning: L773:1756 0381

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Enroth, Stefan, 1976-, et al. (författare)
  • SICTIN : Rapid footprinting of massively parallel sequencing data
  • 2010
  • Ingår i: BioData Mining. - : Springer Science and Business Media LLC. - 1756-0381. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Massively parallel sequencing allows for genome-wide hypothesis-free investigation of for instance transcription factor binding sites or histone modifications. Although nucleotide resolution detailed information can easily be generated, biological insight often requires a more general view of patterns (footprints) over distinct genomic features such as transcription start sites, exons or repetitive regions. The construction of these footprints is however a time consuming task.METHODS: The presented software generates a binary representation of the signals enabling fast and scalable lookup. This representation allows for footprint generation in mere minutes on a desktop computer. Several different input formats are accepted, e.g. the SAM format, bed-files and the UCSC wiggle track.CONCLUSIONS: Hypothesis-free investigation of genome wide interactions allows for biological data mining at a scale never before seen. Until recently, the main focus of analysis of sequencing data has been targeted on signal patterns around transcriptional start sites which are in manageable numbers. Today, focus is shifting to a wider perspective and numerous genomic features are being studied. To this end, we provide a system allowing for fast querying in the order of hundreds of thousands of features.
  •  
2.
  • Lekman, Magnus, et al. (författare)
  • The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder : an explorative study
  • 2014
  • Ingår i: BioData Mining. - : Springer Science and Business Media LLC. - 1756-0381. ; 7, s. 19-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Results: Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e. g. additive dominant model P-uncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with P-uncorrected = 6.95E-5 with odds ratio (OR estimated from beta 3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). Conclusions: We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously unsuspected effects that could provide novel insights into MDD risk, but much larger sample sizes are needed before this strategy can be powerfully applied.
  •  
3.
  • Schilling, Ruben, et al. (författare)
  • pGQL: A probabilistic graphical query language for gene expression time courses.
  • 2011
  • Ingår i: BioData mining. - : Springer Science and Business Media LLC. - 1756-0381. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Timeboxes are graphical user interface widgets that were proposed to specify queries on time course data. As queries can be very easily defined, an exploratory analysis of time course data is greatly facilitated. While timeboxes are effective, they have no provisions for dealing with noisy data or data with fluctuations along the time axis, which is very common in many applications. In particular, this is true for the analysis of gene expression time courses, which are mostly derived from noisy microarray measurements at few unevenly sampled time points. From a data mining point of view the robust handling of data through a sound statistical model is of great importance.We propose probabilistic timeboxes, which correspond to a specific class of Hidden Markov Models, that constitutes an established method in data mining. Since HMMs are a particular class of probabilistic graphical models we call our method Probabilistic Graphical Query Language. Its implementation was realized in the free software package pGQL. We evaluate its effectiveness in exploratory analysis on a yeast sporulation data set.We introduce a new approach to define dynamic, statistical queries on time course data. It supports an interactive exploration of reasonably large amounts of data and enables users without expert knowledge to specify fairly complex statistical models with ease. The expressivity of our approach is by its statistical nature greater and more robust with respect to amplitude and frequency fluctuation than the prior, deterministic timeboxes.
  •  
4.
  • Berghoff, Bork A., et al. (författare)
  • RNA-sequence data normalization through in silico prediction of reference genes : the bacterial response to DNA damage as case study
  • 2017
  • Ingår i: BioData Mining. - : Springer Science and Business Media LLC. - 1756-0381. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Measuring how gene expression changes in the course of an experiment assesses how an organism responds on a molecular level. Sequencing of RNA molecules, and their subsequent quantification, aims to assess global gene expression changes on the RNA level (transcriptome). While advances in high-throughput RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate post-processing and normalization across samples is required to eliminate any systematic noise introduced by the biochemical and/or technical processes. Existing methods thus either normalize on selected known reference genes that are invariant in expression across the experiment, assume that the majority of genes are invariant, or that the effects of up-and down-regulated genes cancel each other out during the normalization.Results: Here, we present a novel method, moose(2), which predicts invariant genes in silico through a dynamic programming (DP) scheme and applies a quadratic normalization based on this subset. The method allows for specifying a set of known or experimentally validated invariant genes, which guides the DP. We experimentally verified the predictions of this method in the bacterium Escherichia coli, and show how moose(2) is able to (i) estimate the expression value distances between RNA-seq samples, (ii) reduce the variation of expression values across all samples, and (iii) to subsequently reveal new functional groups of genes during the late stages of DNA damage. We further applied the method to three eukaryotic data sets, on which its performance compares favourably to other methods. The software is implemented in C++ and is publicly available from http://grabherr.github.io/moose2/.Conclusions: The proposed RNA-seq normalization method, moose(2), is a valuable alternative to existing methods, with two major advantages: (i) in silico prediction of invariant genes provides a list of potential reference genes for downstream analyses, and (ii) non-linear artefacts in RNA-seq data are handled adequately to minimize variations between replicates.
  •  
5.
  • Lekman, Magnus, et al. (författare)
  • A significant risk locus on 19q13 for bipolar disorder identified using a combined genome-wide linkage and copy number variation analysis
  • 2015
  • Ingår i: BioData Mining. - : Springer Science and Business Media LLC. - 1756-0381. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genetic background to bipolar disorder (BPD) has been attributed to different genetic and genomic risk factors. In the present study we hypothesized that inherited copy number variations (CNVs) contribute to susceptibility of BPD. We screened 637 BP-pedigrees from the NIMH Genetic Initiative and gave priority to 46 pedigrees. In this subsample we performed parametric and non-parametric genome-wide linkage analyses using similar to 21,000 SNP-markers. We developed an algorithm to test for linkage restricted to regions with CNVs that are shared within and across families. Results: For the combined CNV and linkage analysis, one region on 19q13 survived correction for multiple comparisons and replicates a previous BPD risk locus. The shared CNV map to the pregnancy-specific glycoprotein (PSG) gene, a gene-family not previously implicated in BPD etiology. Two SNPs in the shared CNV are likely transcription factor binding sites and are linked to expression of an F-box binding gene, a key regulator of neuronal pathways suggested to be involved in BPD etiology. Conclusions: Our CNV-weighted linkage approach identifies a risk locus for BPD on 19q13 and forms a useful tool to future studies to unravel part of the genetic vulnerability to BPD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy