SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1756 591X "

Search: L773:1756 591X

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blockhuys, Stephanie, 1983, et al. (author)
  • Defining the human copper proteome and analysis of its expression variation in cancers.
  • 2017
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 9:2, s. 112-123
  • Journal article (peer-reviewed)abstract
    • Copper (Cu) is essential for living organisms, and acts as a cofactor in many metabolic enzymes. To avoid the toxicity of free Cu, organisms have specific transport systems that 'chaperone' the metal to targets. Cancer progression is associated with increased cellular Cu concentrations, whereby proliferative immortality, angiogenesis and metastasis are cancer hallmarks with defined requirements for Cu. The aim of this study is to gather all known Cu-binding proteins and reveal their putative involvement in cancers using the available database resources of RNA transcript levels. Using the database along with manual curation, we identified a total of 54 Cu-binding proteins (named the human Cu proteome). Next, we retrieved RNA expression levels in cancer versus normal tissues from the TCGA database for the human Cu proteome in 18 cancer types, and noted an intricate pattern of up- and downregulation of the genes in different cancers. Hierarchical clustering in combination with bioinformatics and functional genomics analyses allowed for the prediction of cancer-related Cu-binding proteins; these were specifically inspected for the breast cancer data. Finally, for the Cu chaperone ATOX1, which is the only Cu-binding protein proposed to have transcription factor activities, we validated its predicted over-expression in patient breast cancer tissue at the protein level. This collection of Cu-binding proteins, with RNA expression patterns in different cancers, will serve as an excellent resource for mechanistic-molecular studies of Cu-dependent processes in cancer.
  •  
2.
  • Fischer, F., et al. (author)
  • Expansion of nickel binding- and histidine-rich proteins during gastric adaptation of Helicobacter species
  • 2022
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 14:9
  • Journal article (peer-reviewed)abstract
    • Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking, and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics, and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OGs) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 +/- 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 +/- 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme oxygenases. The expansion of histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.
  •  
3.
  • Griese, Julia J., et al. (author)
  • X ray reduction correlates with soaking accessibility as judged from four non crystallographically related diiron sites
  • 2012
  • In: METALLOMICS. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 4:9, s. 894-898
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography is extensively used to determine the atomic structure of proteins and their cofactors. Though a commonly overlooked problem, it has been shown that structural damage to a redox active metal site may precede loss of diffractivity by more than an order of magnitude in X-ray dose. Therefore the risk of misassigning redox states is great. Adequate treatment and consideration of this issue is of paramount importance in metalloprotein science, from experimental design to interpretation of the data and results. Some metal sites appear to be much more amenable to reduction than others, but the underlying processes are poorly understood. Here, we have analyzed the four non-crystallographically related diiron sites in a crystal of the ribonucleotide reductase R2F protein from Corynebacterium ammoniagenes. We conclude that the amount of X-ray reduction a metal site suffers correlates with its soaking accessibility. This direct observation supports the hypothesis that a diffusion component is involved in the X-ray reduction process.
  •  
4.
  • Hossain, Bakhtiar, et al. (author)
  • Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype.
  • 2012
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 4:11, s. 1167-1175
  • Journal article (peer-reviewed)abstract
    • Arsenic is carcinogenic, possibly partly through epigenetic mechanisms. We evaluated the effects of arsenic exposure and metabolism on DNA methylation. Arsenic exposure and methylation efficiency in 202 women in the Argentinean Andes were assessed from concentrations of arsenic metabolites in urine (inorganic arsenic, methylarsonic acid [MMA], and dimethylarsinic acid [DMA]), measured by HPLC-ICPMS. Methylation of CpGs of the tumor suppressor gene p16, the DNA repair gene MLH1, and the repetitive elements LINE1 was measured by PCR pyrosequencing of blood DNA. Genotyping (N = 172) for AS3MT was performed using Sequenom™, and gene expression (N = 90) using Illumina DirectHyb HumanHT-12 v3.0. Median arsenic concentration in urine was 230 μg L(-1) (range 10.1-1251). In linear regression analysis, log(2)-transformed urinary arsenic concentrations were positively associated with methylation of p16 (β = 0.14, P = 0.0028) and MLH1 (β = 0.28, P = 0.0011), but not with LINE1. Arsenic concentrations were of borderline significance negatively correlated with expression of p16 (r(s) = -0.20; P = 0.066)), but not with MLH1. The fraction of inorganic arsenic was positively (β = 0.026; P = 0.010) and DMA was negatively (β = -0.017, P = 0.043) associated with p16 methylation with no effect of MMA. Carriers of the slow-metabolizing AS3MT haplotype were associated with more p16 methylation (P = 0.022). Arsenic exposure was correlated with increased methylation, in blood, of genes encoding enzymes that suppress carcinogenesis, and the arsenic metabolism efficiency modified the degree of epigenetic alterations.
  •  
5.
  • Högbom, Martin (author)
  • Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear-an intricate bioinorganic workaround to use different metals for the same reaction
  • 2011
  • In: METALLOMICS. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 3:2, s. 110-120
  • Research review (peer-reviewed)abstract
    • The ferritin-like superfamily comprises of several protein groups that utilize dinuclear metal sites for various functions, from iron storage to challenging oxidations of substrates. Ribonucleotide reductase R2 proteins use the metal site for the generation of a free radical required for the reduction of ribonucleotides to deoxyriboinucleotides, the building blocks of DNA. This ubiquitous and essential reaction has been studied for over four decades and the R2 proteins were, until recently, generally believed to employ the same cofactor and mechanism for radical generation. In this reaction, a stable tyrosyl radical is produced following activation and cleavage of molecular oxygen at a dinuclear iron site in the protein. Discoveries in the last few years have now firmly established that the radical generating reaction is not conserved among the R2 proteins but that different subgroups, that are structurally very similar, instead employ di-manganese or heterodinuclear Mn-Fe cofactors as radical generators. This is remarkable considering that the protein must exercise a strict control over oxygen activation, reactive metal-oxygen intermediate species and the resulting redox potential of the produced radical equivalent. Given the differences in redox properties between Mn and Fe, use of a different metal for this reaction requires associated adaptations of the R2 protein scaffold and the activation mechanism. Further analysis of the differences in protein sequence between R2 subgroups have also led to the discovery of new groups of R2-like proteins with completely different functions, expanding the chemical repertoire of the ferritin-like superfamily. This review describes the discoveries leading up to the identification of the different Mn-containing R2 protein groups and our current understanding of them. Hypotheses regarding the biochemical rationale to develop these chemically complex alternative solutions are also discussed.
  •  
6.
  • La Mendola, D., et al. (author)
  • Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity
  • 2016
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 8:1, s. 118-124
  • Journal article (peer-reviewed)abstract
    • Angiogenin is a member of the ribonuclease family and a normal constituent of human plasma. It is one of the most potent angiogenic factors known and is overexpressed in different types of cancers. Copper is also an essential cofactor in angiogenesis and, during this process, it is mobilized from inside to outside of the cell. To date, contrasting results have been reported about copper(II) influencing angiogenin activity. However, in these studies, the recombinant form of the protein was used. Unlike recombinant angiogenin, that contains an extra methionine with a free terminal amino group, the naturally occurring protein present in human plasma starts with a glutamine residue that spontaneously cyclizes to pyroglutamate, a lactam derivative. Herein, we report spectroscopic evidence indicating that copper(II) experiences different coordination environments in the two protein isoforms, and affects their RNase and angiogenic activity differently. These results show how relatively small differences between recombinant and wild type proteins can result in markedly different behaviours.
  •  
7.
  • Li, J, et al. (author)
  • The production of reactive oxygen species enhanced with the reduction of menadione by active thioredoxin reductase
  • 2019
  • In: Metallomics : integrated biometal science. - : Oxford University Press (OUP). - 1756-591X. ; 11:9, s. 1490-1497
  • Journal article (peer-reviewed)abstract
    • Cytosolic thioredoxin reductase (TXNRD1) is an important selenoprotein that participates in the reduction of thioredoxin and many other redox-related substrates. The enhancement of ROS production to cause cancer cell death is an effective anticancer strategy. Herein, we found that menadione substantially increased ROS generation via interaction with TXNRD1. To elucidate the mechanism behind this, various TXNRD1 mutant proteins were used to investigate the relationship between ROS production and the reaction between enzymes and menadione. A mutation at the C-terminal active site -GCUG of TXNRD1 to -GSSG or -GC, or the N-terminal active site C59S, C64S, or the deletion of the C-terminal 16 amino acid residues caused the loss of TXNRD1 activity needed for the reduction of menadione and therefore resulted in the loss of the ROS production ability of menadione. In contrast, the mutation of -GCUG to -GCCG resulted in an increase in the TXNRD1 activity towards the reduction of menadione, thus leading to an increase in ROS production. The co-treatment of the TXNRD1 inhibitor aurothioglucose and menadione could significantly alleviate the efficiency of ROS generation in vitro and increase the viability of A549 cells. Moreover, menadione could be reduced by the glutathione system and caused ROS production with less efficiency. These results demonstrate that TXNRD1 can serve as an effective source to generate ROS, which may provide a novel anticancer method based on the use of menadione.
  •  
8.
  • Niemiec, Maria Joanna, 1984-, et al. (author)
  • Trace element landscape of resting and activated human neutrophils on the sub-micrometer level
  • 2015
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-591X .- 1756-5901. ; 7:6, s. 996-1010
  • Journal article (peer-reviewed)abstract
    • Every infection is a battle for trace elements. Neutrophils migrate first to the infection site and accumulate quickly to high numbers. They fight pathogens by phagocytosis and intracellular toxication. Additionally, neutrophils form neutrophil extracellular traps (NETs) to inhibit extracellular microbes. Yet, neutrophil trace element characteristics are largely unexplored. We investigated unstimulated and phorbol myristate acetate-stimulated neutrophils using synchrotron radiation X-ray fluorescence (SR-XRF) on the sub-micron spatial resolution level. PMA activates pinocytosis, cytoskeletal rearrangements and the release of NETs, all mechanisms deployed by neutrophils to combat infection. By analyzing Zn, Fe, Cu, Mn, P, S, and Ca, not only the nucleus but also vesicular granules were identifiable in the elemental maps. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed a neutrophil-specific composition of Zn, Fe, Cu, and Mn in comparison with J774 and HeLa cells, indicating a neutrophil-specific metallome complying with their designated functions. When investigating PMA-activated neutrophils, the SR-XRF analysis depicted typical subcellular morphological changes: the transformation of nucleus and granules and the emergence of void vacuoles. Mature NETs were evenly composed of Fe, P, S, and Ca with occasional hot spots containing Zn, Fe, and Ca. An ICP-MS-based quantification of NET supernatants revealed a NETosis-induced decrease of soluble Zn, whereas Fe, Cu, and Mn concentrations were only slightly affected. In summary, we present a combination of SR-XRF and ICP-MS as a powerful tool to analyze trace elements in human neutrophils. The approach will be applicable and valuable to numerous aspects of nutritional immunity.
  •  
9.
  •  
10.
  • Ponnandai Schanmugavel, Kumaravel, 1991, et al. (author)
  • Copper relay path through the N-terminus of Wilson disease protein, ATP7B
  • 2019
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 11:9, s. 1472-1480
  • Journal article (peer-reviewed)abstract
    • In human cells, copper (Cu) ions are transported by the cytoplasmic Cu chaperone Atox1 to the Wilson disease protein (ATP7B) in the Golgi for loading of Cu-dependent enzymes. ATP7B is a membrane-spanning protein which, in contrast to non-mammalian homologs, has six cytoplasmic metal-binding domains (MBDs). To address the reason for multiple MBDs, we introduced strategic mutations in which one, two or three MBDs had been blocked for Cu binding via cysteine-to-serine mutations (but all six MBDs are present in all) in a yeast system that probes Cu flow through Atox1 and ATP7B. The results, combined with earlier work, support a mechanistic model in which MBD1-3 forms a regulatory unit of ATP7B Cu transport. Cu delivery via Atox1 to this unit, followed by loading of Cu in MBD3, promotes release of inhibitory interactions. Whereas the Cu site in MBD4 can be mutated without a large effect, an intact Cu site in either MBD5 or MBD6 is required for Cu transport. All MBDs, expressed as single-domain proteins, can replace Atox1 and deliver Cu to full-length ATP7B. However, only MBD6 can deliver Cu to truncated ATP7B where all six MBDs are removed, suggesting a docking role for this structural unit
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view