SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1876 4436 OR L773:0939 3889 "

Sökning: L773:1876 4436 OR L773:0939 3889

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Carlsson, Åsa, 1978, et al. (författare)
  • The influence of cardiac triggering time and an optimization strategy for improved cardiac MR spectroscopy.
  • 2017
  • Ingår i: Zeitschrift fur medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 27:4, s. 310-317
  • Tidskriftsartikel (refereegranskat)abstract
    • To study how cardiac motion affects the spectral quality in cardiac MR spectroscopy and to establish an optimization strategy for the cardiac triggering time for improved quality and success rate of cardiac MRS.Water spectra were acquired while the cardiac triggering time was varied over the cardiac cycle, and five different spectral quality parameters were studied (frequency, phase, linewidth, amplitude and noise). Furthermore, three different optimization strategies for the cardiac triggering time were tested, and finally, a comparison was made between water suppressed lipid spectra acquired in systole and diastole.The cardiac triggering time had a high impact on the spectral quality, especially on the mean signal amplitude and the standard deviation of the signal amplitude, phase and linewidth. Generally, the highest spectral quality was observed for spectra acquired in mid to end systole, at approximately 23% of the cardiac cycle. The exact optimal triggering time differed between subjects and needed to be individually optimized. To optimize the triggering time with our proposed MRS-method gave in average 13% higher signal than when the triggering time was determined through imaging. Lipid spectra acquired in systole demonstrated higher quality with improved SNR compared with acquisitions made in diastole.This study shows that the spectral quality in cardiac MRS is strongly dependent on the cardiac triggering time, and that the spectral quality as well as the repeatability between acquisitions is greatly improved when the cardiac triggering time is individually optimized in mid to end systole using MRS.
  •  
3.
  • Fetty, Lukas, et al. (författare)
  • Latent space manipulation for high-resolution medical image synthesis via the StyleGAN
  • 2020
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier. - 0939-3889 .- 1876-4436. ; 30:4, s. 305-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This paper explores the potential of the StyleGAN model as an high-resolution image generator for synthetic medical images. The possibility to generate sample patient images of different modalities can be helpful for training deep learning algorithms as e.g. a data augmentation technique.Methods: The StyleGAN model was trained on Computed Tomography (CT) and T2- weighted Magnetic Resonance (MR) images from 100 patients with pelvic malignancies. The resulting model was investigated with regards to three features: Image Modality, Sex, and Longitudinal Slice Position. Further, the style transfer feature of the StyleGAN was used to move images between the modalities. The root-mean-squard error (RMSE) and the Mean Absolute Error (MAE) were used to quantify errors for MR and CT, respectively.Results: We demonstrate how these features can be transformed by manipulating the latent style vectors, and attempt to quantify how the errors change as we move through the latent style space. The best results were achieved by using the style transfer feature of the StyleGAN (58.7 HU MAE for MR to CT and 0.339 RMSE for CT to MR). Slices below and above an initial central slice can be predicted with an error below 75 HU MAE and 0.3 RMSE within 4 cm for CT and MR, respectively.Discussion: The StyleGAN is a promising model to use for generating synthetic medical images for MR and CT modalities as well as for 3D volumes.
  •  
4.
  • Fu, Jian, et al. (författare)
  • An algebraic iterative reconstruction technique for differential X-ray phase-contrast computed tomography
  • 2013
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 23:3, s. 186-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications.
  •  
5.
  •  
6.
  • Koole, Michel, et al. (författare)
  • EANM guidelines for PET-CT and PET-MR routine quality control
  • 2023
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier. - 0939-3889 .- 1876-4436. ; 33:1, s. 103-113
  • Tidskriftsartikel (refereegranskat)abstract
    • We present guidelines by the European Association of Nuclear Medicine (EANM) for routine quality control (QC) of PET-CT and PET-MR systems. These guidelines are partially based on the current EANM guidelines for routine quality control of Nuclear Medicine instrumentation but focus more on the inherent multimodal aspect of the current, state-of-the-art PET-CT and PET-MR scanners. We briefly discuss the regulatory context put forward by the International Electrotechnical Commission (IEC) and European Commission (EC) and consider relevant guidelines and recommendations by other societies and professional organizations. As such, a comprehensive overview of recommended quality control procedures is provided to ensure the optimal operational status of a PET system, integrated with either a CT or MR system. In doing so, we also discuss the rationale of the different tests, advice on the frequency of each test and present the relevant MR and CT tests for an integrated system. In addition, we recommend a scheme of preventive actions to avoid QC tests from drifting out of the predefined range of acceptable performance values such that an optimal performance of the PET system is maintained for routine clinical use.
  •  
7.
  • Kragl, Gabriele, et al. (författare)
  • Flattening filter free beams in SBRT and IMRT: Dosimetric assessment of peripheral doses
  • 2011
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 21:2, s. 91-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Recently, there has been a growing interest in operating medical linear accelerators without a flattening filter Due to reduced scatter, leaf transmission and radiation head leakage a reduction of out-of-field dose is expected for flattening filter free beams. The aim of the present study was to determine the impact of unflattened beams on peripheral dose for advanced treatment techniques with a large number of MUs. Material and methods: An Elekta Precise linac was modified to provide 6 and 10 MV photon beams without a flattening filter Basic beam data were collected and implemented into the TPS Oncentra Masterplan (Nucletron). Leakage radiation, which predominantly contributes to peripheral dose at larger distances from the field edge, was measured using a Farmer type ionisation chamber SBRT (lung) and IMRT (prostate, head&neck) treatment plans were generated for 6 and 10 MV for both flattened and unflattened beams. All treatment plans were delivered to the relevant anatomic region of an anthropomorphic phantom which was extended by a solid water slab phantom. Dosimetric measurements were performed with TLD-700 rods, radiochromic films and a Farmer type ionisation chamber The detectors were placed within the slab phantom and positioned along the isocentric longitudinal axis. Results: Using unflattened beams results in a reduction of treatment head leakage by 52% for 6 and 65% for 10 MV. Thus, peripheral doses were in general smaller for treatment plans calculated with unflattened beams. At about 20 cm distance from the field edge the dose was on average reduced by 23 and 31% for the 6 and 10 MV SBRT plans. For the IMRT plans (10 MV) the average reduction was 16% for the prostate and 18% for the head&neck case, respectively. For all examined cases, the relative deviation between peripheral doses of flattened and unflattened beams was found to increase with increasing distance from the field. Conclusions: Removing the flattening filter lead to reduced peripheral doses for advanced treatment techniques. The relative difference between peripheral doses of flattened and unflattened beams was more pronounced when the nominal beam energy was increased. Patients may benefit by decreased exposure of normal tissue to scattered dose outside the field.
  •  
8.
  • Lynggaard Riis, Hans, et al. (författare)
  • Dosimetric validation of the couch and coil model for high-field MR-linac treatment planning
  • 2023
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier. - 0939-3889 .- 1876-4436. ; 33:4, s. 567-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The precision of the dose delivery in radiation therapy with high-field MR-linacs is challenging due to the sub-stantial variation in the beam attenuation of the patient positioning system (PPS) (the couch and coils) as a function of the gantry angle. This work aimed to compare the attenuation of two PPSs located at two different MR-linac sites through measurements and calculations in the treatment planning system (TPS).Methods: Attenuation measurements were performed at every 1 degrees gantry angle at the two sites with a cylindrical water phantom with a Farmer chamber inserted along the rotational axis of the phantom. The phantom was positioned with the chamber reference point (CRP) at the MR-linac isocentre. A compensation strategy was applied to minimise sinusoidal measurement errors due to, e.g. air cavity or setup. A series of tests were performed to assess the sensitivity to measurement uncertainties. The dose to a model of the cylindrical water phantom with the PPS added was calculated in the TPS (Monaco v5.4 as well as in a development version Dev of an upcoming release), for the same gantry angles as for the measurements. The TPS PPS model dependency of the dose calculation voxelisation resolution was also investigated.Results: A comparison of the measured attenuation of the two PPSs yielded differences of less than 0.5% for most gantry angles. The maximum deviation between the attenuation measurements for the two different PPSs exceeded +/- 1% at two specific gantry angles 115 degrees and 245 degrees, where the beam traverses the most complex PPS structures. The attenuation increases from 0% to 25% in 15 degrees intervals around these angles. The measured and calculated attenuation, as calculated in v5.4, was generally within 1-2% with a systematic overestimation of the attenuation for gantry angles around 180 degrees, as well as a maximum error of 4-5% for a few discrete angles in 10 degrees gantry angle intervals around the complex PPS structures. The PPS modelling was improved compared to v5.4 in Dev, especially around 180 degrees, and the results of those calculations were within +/- 1%, but with a similar 4% maximum deviation for the most complex PPS structures.Conclusions: Generally, the two tested PPS structures exhibit very similar attenuation as a function of the gantry angle, including the angles with a steep change in attenuation. Both TPS versions, v5.4 and Dev delivered clinically acceptable accuracy of the calculated dose, as the differences in the measurements were overall better than +/- 2%. Additionally, Dev improved the accuracy of the dose calculation to +/- 1% for gantry angles around 180 degrees.
  •  
9.
  • Schwab, Felix, et al. (författare)
  • Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue
  • 2013
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 23:3, s. 236-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF /CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all Rats (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI.
  •  
10.
  • Simkó, Attila, et al. (författare)
  • Towards MR contrast independent synthetic CT generation
  • 2023
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier. - 0939-3889 .- 1876-4436.
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of synthetic CT (sCT) in the radiotherapy workflow would reduce costs and scan time while removing the uncertainties around working with both MR and CT modalities. The performance of deep learning (DL) solutions for sCT generation is steadily increasing, however most proposed methods were trained and validated on private datasets of a single contrast from a single scanner. Such solutions might not perform equally well on other datasets, limiting their general usability and therefore value. Additionally, functional evaluations of sCTs such as dosimetric comparisons with CT-based dose calculations better show the impact of the methods, but the evaluations are more labor intensive than pixel-wise metrics.To improve the generalization of an sCT model, we propose to incorporate a pre-trained DL model to pre-process the input MR images by generating artificial proton density, T1 and T2 maps (i.e. contrast-independent quantitative maps), which are then used for sCT generation. Using a dataset of only T2w MR images, the robustness towards input MR contrasts of this approach is compared to a model that was trained using the MR images directly. We evaluate the generated sCTs using pixel-wise metrics and calculating mean radiological depths, as an approximation of the mean delivered dose. On T2w images acquired with the same settings as the training dataset, there was no significant difference between the performance of the models. However, when evaluated on T1w images, and a wide range of other contrasts and scanners from both public and private datasets, our approach outperforms the baseline model. Using a dataset of T2w MR images, our proposed model implements synthetic quantitative maps to generate sCT images, improving the generalization towards other contrasts. Our code and trained models are publicly available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy