SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1943 2461 "

Sökning: L773:1943 2461

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson, Marianne, 1969, et al. (författare)
  • Effect of booster seat design on children's choice of seating positions during naturalistic riding
  • 2010
  • Ingår i: Annals of Advances in Automotive Medicine - 54th Annual Scientific Conference; Las Vegas, USA, 17-20 October 2010. - 1943-2461. ; , s. 171-180
  • Konferensbidrag (refereegranskat)abstract
    • The purpose of this naturalistic study was to investigate the effect of booster seat design on the choice of children’s seating positions during naturalistic riding. Data was collected through observations of children during in-vehicle riding by means of a film camera. The children were positioned in high back boosters in the rear seat while a parent drove the car. The study included two different booster designs: one with large head and torso side supports, and one with small head side supports and no torso side supports. Six children between three and six years of age participated in the study. Each child was observed in both boosters. The duration of the seating positions that each child assumed was quantified. The design with large side head supports resulted more often in seating positions without head and shoulder contact with the booster’s back. There was shoulder-to-booster back contact during an average of 45% of riding time in the seat with the large head side supports compared to 75% in the seat with the small head supports. The children in the study were seated with the head in front of the front edge of the head side supports more than half the time, in both boosters. Laterally, the children were almost constantly positioned between the side supports of the booster in both seats. The observed seating positions probably reduce the desired protective effect by the side supports in side impact, and may increase the probability of head impact with the vehicle interior in frontal impact.
  •  
3.
  •  
4.
  • Bohman, Katarina, 1970, et al. (författare)
  • Kinematics and shoulder belt position of child rear seat passengers during vehicle maneuvers
  • 2011
  • Ingår i: Annals of Advances in Automotive Medicine. - 1943-2461. ; 55, s. 15-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Head impact to the seat back has been identified as one important injury causation scenario for seat belt restrained, head-injured children and previous research highlighted vehicle maneuvers prior to impact as possible contributing factors. The aim was to quantify kinematics of child occupants during swerving maneuvers focusing on the child’s lateral movement and seat belt position relative to the child’s shoulder. A study was conducted on a closed-circuit test track with 16 children aged 4-12, restrained in the rear seat of a modern passenger vehicle. A professional driving instructor drove at 50 km/h making sharp turns in a repeatable fashion, resulting in inboard motion of the children. The children were exposed to two turns in each of two restraint systems. Shorter children were on a booster or highback booster cushion. The taller children were seated on a booster cushion or with only a lap and shoulder seat belt. Four film cameras were fixed in the vehicle monitoring the child. Vehicle data were also collected. The seat belt slipped off the shoulder in 1 of 5 turns, varying by age and restraint type. Among shorter children, the belt slipped off in a majority of turns when seated on a booster cushion while the belt remained on the shoulder when seated on the highback booster cushion. Among taller children, the shoulder belt moved far laterally on the shoulder in half of the turns. This data provides valuable knowledge on possible pre-impact postures of children as a result of vehicle swerving maneuvers for a variety of restraint systems.
  •  
5.
  • Bohman, K, et al. (författare)
  • Rear seat occupant thorax protection in near side impacts
  • 2009
  • Ingår i: Annals of advances in automotive medicine. Association for the Advancement of Automotive Medicine. Annual Scientific Conference. - 1943-2461. ; 53, s. 3-12
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Iraeus, Johan, 1973-, et al. (författare)
  • Evaluation of chest injury mechanisms in nearside oblique frontal impacts
  • 2013
  • Ingår i: Annals of advances in automotive medicine. - : Association for the Advancement of Automotive Medicine. - 1943-2461. ; 57, s. 183-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries.To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy.The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework.In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°-35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury.
  •  
7.
  • Kircher, Katja, et al. (författare)
  • Predicting visual distraction using driving performance data
  • 2010
  • Ingår i: Annals of advances in automotive medicine. - 1943-2461. ; 54, s. 333-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive.For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 - 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %).The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust.
  •  
8.
  •  
9.
  •  
10.
  • Othman, Sarbaz Najib, 1971, et al. (författare)
  • Are driving and overtaking on right curves more dangerous than on left curves?
  • 2010
  • Ingår i: Annals of advances in automotive medicine. - : Association for the Advancement of Automotive Medicine. - 1943-2461. ; 54, s. 253-264, s. 253-264
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that crashes on horizontal curves are a cause for concern in all countries due to the frequency and severity of crashes at curves compared to road tangents. A recent study of crashes in western Sweden reported a higher rate of crashes in right curves than left curves. To further understand this result, this paper reports the results of novel analyses of the responses of vehicles and drivers during negotiating and overtaking maneuvers on curves for right hand traffic. The overall objectives of the study were to find road parameters for curves that affect vehicle dynamic responses, to analyze these responses during overtaking maneuvers on curves, and to link the results with driver behavior for different curve directions. The studied road features were speed, super-elevation, radius and friction including their interactions, while the analyzed vehicle dynamic factors were lateral acceleration and yaw angular velocity. A simulation program, PC-Crash, has been used to simulate road parameters and vehicle response interaction in curves. Overtaking maneuvers have been simulated for all road feature combinations in a total of 108 runs. Analysis of variances (ANOVA) was performed, using two sided randomized block design, to find differences in vehicle responses for the curve parameters. To study driver response, a field test using an instrumented vehicle and 32 participants was reviewed as it contained longitudinal speed and acceleration data for analysis. The simulation results showed that road features affect overtaking performance in right and left curves differently. Overtaking on right curves was sensitive to radius and the interaction of radius with road condition; while overtaking on left curves was more sensitive to super-elevation. Comparisons of lateral acceleration and yaw angular velocity during these maneuvers showed different vehicle response configurations depending on curve direction and maneuver path. The field test experiments also showed that drivers behave differently depending on the curve direction where both speed and acceleration were higher on right than left curves. The implication of this study is that curve direction should be taken into consideration to a greater extent when designing and redesigning curves. It appears that the driver and the vehicle are influenced by different infrastructure factors depending on the curve direction. In addition, the results suggest that the vehicle dynamics response alone cannot explain the higher crash risk in right curves. Further studies of the links between driver, vehicle, and highway characteristics are needed, such as naturalistic driving studies, to identify the key safety indicators for highway safety.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy