SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2041 9139 "

Sökning: L773:2041 9139

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boisvert, Catherine Anne, 1978-, et al. (författare)
  • Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri) : conservation and innovation across the fish-tetrapod transition
  • 2013
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 4, s. 3-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus). Results: In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature. Conclusions: Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It is hypothesized that the iliac process or ridge present in most tetrapodomorph fish is the precursor to the tetrapod ilium and that its evolution mimicked its development in modern salamanders.
  •  
2.
  • Fuchs, Judith, 1978, et al. (författare)
  • Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle
  • 2011
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background Bryozoa is a clade of aquatic protostomes. The bryozoan life cycle typically comprises a larval stage, which metamorphoses into a sessile adult that proliferates by asexual budding to form colonies. The homology of bryozoan larvae with other protostome larvae is enigmatic. Bryozoan larvae exhibit blastemic tissues that contribute to build the adult during morphogenesis. However, it remains unclear if the cells of these tissues are pre-determined according to their future fate or if the cells are undifferentiated, pluripotent stem cells. Gene expression studies can help to identify molecular patterning of larval and adult tissues and enlighten the evolution of bryozoan life cycle stages. Results We investigated the spatial expression of 13 developmental genes in the larval stage of the gymnolaemate bryozoan Bugula neritina. We found most genes expressed in discrete regions in larval blastemic tissues that form definitive components of the adult body plan. Only two of the 13 genes, BnTropomyosin and BnFoxAB, were exclusively expressed in larval tissues that are discarded during metamorphosis. Conclusions Our results suggest that the larval blastemas in Bugula are pre-patterned according to their future fate in the adult. The gene expression patterns indicate that some of the bryozoan blastemas can be interpreted to correspond to homologous adult tissues of other animals. This study challenges an earlier proposed view that metazoan larvae share homologous undifferentiated "set-aside cells", and instead points to an independent origin of the bryozoan larval stage with respect to other lophotrochozoans.
  •  
3.
  • Hogvall, Mattias, et al. (författare)
  • Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation
  • 2014
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 5, s. 14-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Onychophora are a probable sister group to Arthropoda, one of the most intensively studied animal phyla from a developmental perspective. Pioneering work on the fruit fly Drosophila melanogaster and subsequent investigation of other arthropods has revealed important roles for Wnt genes during many developmental processes in these animals. Results: We screened the embryonic transcriptome of the onychophoran Euperipatoides kanangrensis and found that at least 11 Wnt genes are expressed during embryogenesis. These genes represent 11 of the 13 known subfamilies of Wnt genes. Conclusions: Many onychophoran Wnt genes are expressed in segment polarity gene-like patterns, suggesting a general role for these ligands during segment regionalization, as has been described in arthropods. During early stages of development, Wnt2, Wnt4, and Wnt5 are expressed in broad multiple segment-wide domains that are reminiscent of arthropod gap and Hox gene expression patterns, which suggests an early instructive role for Wnt genes during E. kanangrensis segmentation.
  •  
4.
  •  
5.
  • Janssen, Ralf, 1975-, et al. (författare)
  • Expression of myriapod pair rule gene orthologs
  • 2011
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSegmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce.ResultsHere we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs.ConclusionsAlthough the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.
  •  
6.
  • Janssen, Ralf, 1975-, et al. (författare)
  • Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda
  • 2010
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly.Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods.Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda.
  •  
7.
  • Ahi, Ehsan Pashay, et al. (författare)
  • Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization
  • 2018
  • Ingår i: EvoDevo. - : BMC. - 2041-9139. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies.Results: We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1).Conclusions: These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
  •  
8.
  • Dylus, D.V., et al. (författare)
  • Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks
  • 2016
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Dylus et al. Background: The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results: We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformis pplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion: Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms.
  •  
9.
  •  
10.
  • Heingård, Miriam, et al. (författare)
  • FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning
  • 2019
  • Ingår i: EvoDevo. - : BMC. - 2041-9139. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Forkhead box (Fox) transcription factors evolved early in animal evolution and represent important components of conserved gene regulatory networks (GRNs) during animal development. Most of the researches concerning Fox genes, however, are on vertebrates and only a relatively low number of studies investigate Fox gene function in invertebrates. In addition to this shortcoming, the focus of attention is often restricted to a few well-characterized Fox genes such as FoxA (forkhead), FoxC (crocodile) and FoxQ2. Although arthropods represent the largest and most diverse animal group, most other Fox genes have not been investigated in detail, not even in the arthropod model species Drosophila melanogaster. In a general gene expression pattern screen for panarthropod Fox genes including the red flour beetle Tribolium castaneum, the pill millipede Glomeris marginata, the common house spider Parasteatoda tepidariorum, and the velvet worm Euperipatoides kanangrensis, we identified a Fox gene with a highly conserved expression pattern along the ventral ectoderm of arthropod and onychophoran limbs. Functional investigation of FoxB in Parasteatoda reveals a hitherto unrecognized important function of FoxB upstream of wingless (wg) and decapentaplegic (dpp) in the GRN orchestrating dorsal-ventral limb patterning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy