SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2058 8585 "

Sökning: L773:2058 8585

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cherian, Dennis, et al. (författare)
  • Large-area printed organic electronic ion pumps
  • 2019
  • Ingår i: FLEXIBLE AND PRINTED ELECTRONICS. - : IOP PUBLISHING LTD. - 2058-8585. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological systems use a large variety of ions and molecules of different sizes for signaling. Precise electronic regulation of biological systems therefore requires an interface which translates the electronic signals into chemically specific biological signals. One technology for this purpose that has been developed during the last decade is the organic electronic ion pump (OEIP). To date, OEIPs have been fabricated by micropatterning and labor-intensive manual techniques, hindering the potential application areas of this promising technology. Here we show, for the first time, fully screen-printed OEIPs. We demonstrate a large-area printed design with manufacturing yield amp;gt;90%. Screen-printed cation- and anion-exchange membranes are both demonstrated with promising ion selectivity and performance, with transport verified for both small ions (Na+,K+,Cl-) and biologically-relevant molecules (the cationic neurotransmitter acetylcholine, and the anionic anti-inflammatory salicylic acid). These advances open the iontronics toolbox to the world of printed electronics, paving the way for a broader arena for applications.
  •  
2.
  • Linderhed, Ulrika, et al. (författare)
  • Fully screen printed stretchable electrochromic displays
  • 2021
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing Ltd. - 2058-8585. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of the Internet of Things and the growing interest in continuous monitoring by wearables have created a need for conformable and stretchable displays. Electrochromic displays (ECDs) are receiving attention as a cost-effective solution for many simple applications. However, stretchable ECDs have yet to be produced in a robust, large scale and cost-efficient manner. Here we develop a process for making fully screen printed stretchable ECDs. By evaluating commercially available inks with respect to electromechanical properties, including electrochromic PEDOT:PSS inks, our process can be directly applied in the manufacturing of stretchable organic electronic devices. The manufactured ECDs retained colour contrast with useful switching times at static strains up to 50% and strain cycling up to 30% strain. To further demonstrate the applicability of the technology, double-digit 7-segment ECDs were produced, which could conform to curved surfaces and be mounted onto stretchable fabrics while remaining fully functional. Based on their simplicity, robustness and processability, we believe that low cost printed stretchable ECDs can be easily scaled up and will find many applications within the rapidly growing markets of wearable electronics and the Internet of Things. © 2021 The Author(s). 
  •  
3.
  • Abdollahi Sani, Negar, et al. (författare)
  • A ferroelectric polymer introduces addressability in electrophoretic display cells
  • 2019
  • Ingår i: FLEXIBLE AND PRINTED ELECTRONICS. - : IOP PUBLISHING LTD. - 2058-8585. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decades, tremendous efforts have been carried out to develop flexible electronics for a vast array of applications. Among all different applications investigated in this area, flexible displays have gained significant attention, being a vital part of large-area devices, portable systems and electronic labels etc electrophoretic (EP) ink displays have outstanding properties such as a superior optical switch contrast and low power consumption, besides being compatible with flexible electronics. However, the EP ink technology requires an active matrix-addressing scheme to enable exclusive addressing of individual pixels. EP ink pixels cannot be incorporated in low cost and easily manufactured passive matrix circuits due to the lack of threshold voltage and nonlinearity, necessities to provide addressability. Here, we suggest a simple method to introduce nonlinearity and threshold voltage in EP ink display cells in order to make them passively addressable. Our method exploits the nonlinearity of an organic ferroelectric capacitor that introduces passive addressability in display cells. The organic ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) is here chosen because of its simple manufacturing protocol and good polarizability. We demonstrate that a nonlinear EP cell with bistable states can be produced by depositing a P(VDF-TrFE) film on the bottom electrode of the display cell. The P(VDF-TrFE) capacitor and the EP ink cell are separately characterized in order to match the surface charge at their respective interfaces and to achieve and optimize bistable operation of display pixels.
  •  
4.
  • Andersson Ersman, Peter, et al. (författare)
  • Monolithic integration of display driver circuits and displays manufactured by screen printing
  • 2020
  • Ingår i: Flexible and Printed Electronics. - : Institute of Physics Publishing. - 2058-8585. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we report all-screen printed display driver circuits, based on organic electrochemical transistors (OECTs), and their monolithic integration with organic electrochromic displays (OECDs). Both OECTs and OECDs operate at low voltages and have similar device architectures, and, notably, they rely on the very same electroactive material as well as on the same electrochemical switching mechanism. This then allows us to manufacture OECT-OECD circuits in a concurrent manufacturing process entirely based on screen printing methods. By taking advantage of the high current throughput capability of OECTs, we further demonstrate their ability to control the light emission in traditional light-emitting diodes (LEDs), where the actual LED addressing is achieved by an OECT-based decoder circuit. The possibility to monolithically integrate all-screen printed OECTs and OECDs on flexible plastic foils paves the way for distributed smart sensor labels and similar Internet of Things applications.
  •  
5.
  • Andersson Ersman, Peter, et al. (författare)
  • Screen printed digital circuits based on vertical organicelectrochemical transistors
  • 2017
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing. - 2058-8585. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical organic electrochemical transistors (OECTs) have been manufactured solely using screenprinting. The OECTs are based on PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid)), which defines the active material for both the transistor channel and the gateelectrode. The resulting vertical OECT devices and circuits exhibit low-voltage operation, relativelyfast switching, small footprint and high manufacturing yield; the last three parameters are explainedby the reliance of the transistor configuration on a robust structure in which the electrolyte verticallybridges the bottom channel and the top gate electrode. Two different architectures of the verticalOECT have been manufactured, characterized and evaluated in parallel throughout this report. Inaddition to the experimental work, SPICE models enabling simulations of standalone OECTs andOECT-based circuits have been developed. Our findings may pave the way for fully integrated, lowvoltageoperating and printed signal processing systems integrated with e.g. printed batteries, solarcells, sensors and communication interfaces. Such technology can then serve a low-cost basetechnology for the internet of things, smart packaging and home diagnostics applications.
  •  
6.
  • Berto, Marcello, et al. (författare)
  • Label free urea biosensor based on organic electrochemical transistors
  • 2018
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing. - 2058-8585. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of urea is of the utmost importance not only in medical diagnosis, where it serves as a potential indicator of kidney and liver disfunction, but also in food safety and environmental control. Here, we describe a urea biosensor based on urease entrapped in a crosslinked gelatin hydrogel, deposited onto a fully printed PEDOT:PSS-based organic electrochemical transistor (OECT). The device response is based on the modulation of the channel conductivity by the ionic species produced upon urea hydrolysis catalyzed by the entrapped urease. The biosensor shows excellent reproducibility, a limit of detection as low as 1 μM and a response time of a few minutes. The fabrication of the OECTs by screen-printing on flexible substrates ensures a significant reduction in manufacturing time and costs. The low dimensionality and operational voltages (0.5 V or below) of these devices contribute to make these enzymatic OECT-based biosensors as appealing candidates for high-throughput monitoring of urea levels at the point-of-care or in the field.
  •  
7.
  • Brooke, Robert, 1989-, et al. (författare)
  • Nanocellulose based carbon ink and its application in electrochromic displays and supercapacitors
  • 2021
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing Ltd. - 2058-8585. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional electronics have been highlighted as a very unsustainable technology; hazardous wastes are produced both during their manufacturing but also, due to their limited recyclability, during their end of life cycle (e.g. disposal in landfill). In recent years additive manufacturing processes (i.e. screen printing) have attracted significant interest as a more sustainable approach to electronic manufacturing (printed electronics). Despite the field of printed electronics addressing some of the issues related to the manufacturing of electronics, many components and inks are still considered hazardous to the environment and are difficult to recycle. Here we present the development of a low environmental impact carbon ink based on a non-hazardous solvent and a cellulosic matrix (nanocellulose) and its implementation in electrochromic displays (ECDs) and supercapacitors. As part of the reported work, a different protocol for mixing carbon and cellulose nanofibrils (rotation mixing and high shear force mixing), nanocellulose of different grades and different carbon: nanocellulose ratios were investigated and optimized. The rheology profiles of the different inks showed good shear thinning properties, demonstrating their suitability for screen-printing technology. The printability of the developed inks was excellent and in line with those of reference commercial carbon inks. Despite the lower electrical conductivity (400 S m-1 for the developed carbon ink compared to 1000 S m-1 for the commercial inks), which may be explained by their difference in composition (carbon content, density and carbon derived nature) compared to the commercial carbon, the developed ink functioned adequately as the counter electrode in all screen-printed ECDs and even allowed for improved supercapacitors compared to those utilizing commercial carbon inks. In this sense, the supercapacitors incorporating the developed carbon ink in the current collector layer had an average capacitance = 97.4 mF cm-2 compared to the commercial carbon ink average capacitance = 61.6 mF cm-2. The ink development reported herein provides a step towards more sustainable printed green electronics. © 2021 The Author(s).
  •  
8.
  • Brooke, Robert, 1989-, et al. (författare)
  • Supercapacitors on demand : All-printed energy storage devices with adaptable design
  • 2019
  • Ingår i: Flexible and Printed Electronics. - : Institute of Physics Publishing. - 2058-8585. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Demands on the storage of energy have increased for many reasons, in part driven by household photovoltaics, electric grid balancing, along with portable and wearable electronics. These are fast-growing and differentiated applications that need large volume and/or highly distributed electrical energy storage, which then requires environmentally friendly, scalable and flexible materials and manufacturing techniques. However, the limitations on current inorganic technologies have driven research efforts to explore organic and carbon-based alternatives. Here, we report a conducting polymer:cellulose composite that serves as the active material in supercapacitors which has been incorporated into all-printed energy storage devices. These devices exhibit a specific capacitance of ≈90 F g -1 and an excellent cyclability (>10 000 cycles). Further, a design concept coined 'supercapacitors on demand' is presented, which is based on a printing-cutting-folding procedure, that provides us with a flexible production protocol to manufacture supercapacitors with adaptable configuration and electrical characteristics.
  •  
9.
  • Cherian, Dennis, et al. (författare)
  • Soft iontronic delivery devices based on an intrinsically stretchable ion selective membrane
  • 2021
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing Ltd. - 2058-8585. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Implantable electronically controlled drug delivery devices can provide precision therapeutic treatments by highly spatiotemporally controlled delivery. Iontronic delivery devices rely on the movement of ions rather than liquid, and can therefore achieve electronically controlled precision delivery in a compact setting without disturbing the microenvironment within the tissue with fluid flow. For maximum precision, the delivery device needs to be closely integrated into the tissue, which is challenging due to the mechanical mismatch between the soft tissue and the harder devices. Here we address this challenge by developing a soft and stretchable iontronic delivery device. By formulating an ink based on an in-house synthesized hyperbranched polyelectrolyte, water dispersed polyurethane, and a thickening agent, a viscous ink is developed for stencil patterning of soft ion exchange membranes (IEMs). We use this ink for developing soft and stretchable delivery devices, which are characterized both in the relaxed and stretched state. We find that their functionality is preserved up to 100% strain, with small variations in resistance due to the strain. Finally, we develop a skin patch to demonstrate the outstanding conformability of the developed device. The presented technology is attractive for future soft implantable delivery devices, and the stretchable IEMs may also find applications within wearable energy devices.
  •  
10.
  • Edberg, Jesper, et al. (författare)
  • Electrochemical circuits from 'cut and stick' PEDOT : PSS-nanocellulose composite
  • 2017
  • Ingår i: Flexible and Printed Electronics. - : Institute of Physics Publishing (IOPP). - 2058-8585. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics (an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm(-1)). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NORlogic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (30)
Typ av innehåll
refereegranskat (27)
populärvet., debatt m.m. (3)
Författare/redaktör
Berggren, Magnus (8)
Simon, Daniel (5)
Beni, Valerio, 1972- (5)
Andersson Ersman, Pe ... (4)
Engquist, Isak (3)
Gustafsson, Göran (3)
visa fler...
Tybrandt, Klas (3)
Sidén, Johan, 1975- (3)
Li, Xiaotian (3)
Berggren, Magnus, 19 ... (3)
Åhlin, Jessica (3)
Sawatdee, Anurak (3)
Fabiano, Simone (2)
Nilsson, Marie (2)
Nilsson, David (2)
Granberg, Hjalmar (2)
Fall, Andreas (2)
Sandberg, Mats (2)
Aulin, Christian (2)
Andersson, Henrik, 1 ... (2)
Westerberg, David (2)
Brooke, Robert, 1989 ... (2)
Schön, Thomas (1)
Abdollahi Sani, Nega ... (1)
Mirbel, Deborah (1)
Brochon, Cyril (1)
Cloutet, Eric (1)
Hadziioannou, George ... (1)
Norberg, Petronella (1)
Liu, Johan, 1960 (1)
Abitbol, Tiffany (1)
Abrahamsson, Tobias (1)
Petsagkourakis, Ioan ... (1)
Johansson, Börje (1)
Pettersson, Fredrik (1)
Tang, Shi (1)
Forchheimer, Robert (1)
Andersson, Henrik, D ... (1)
Ohlsson, Tommy (1)
Hansson, Johan (1)
Powell, John (1)
Chinga-Carrasco, Gar ... (1)
Dedic, Dina (1)
Engström, Ann-Christ ... (1)
Dahlström, Christina ... (1)
Fischer, Thomas (1)
Jeppson, Kjell, 1947 (1)
Lassnig, Roman (1)
Strandberg, Jan (1)
Tu, Deyu (1)
visa färre...
Lärosäte
Linköpings universitet (14)
RISE (12)
Kungliga Tekniska Högskolan (4)
Mittuniversitetet (4)
Luleå tekniska universitet (2)
Umeå universitet (1)
visa fler...
Uppsala universitet (1)
Stockholms universitet (1)
Jönköping University (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Teknik (19)
Naturvetenskap (11)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy