SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2079 4983 "

Sökning: L773:2079 4983

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huttu, Mari, et al. (författare)
  • Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage.
  • 2012
  • Ingår i: Journal of Functional Biomaterials. - Basel, Switzerland : MDPI AG. - 2079-4983. ; 3:3, s. 544-555
  • Tidskriftsartikel (refereegranskat)abstract
    • Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell's mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca(2+)) or in Dulbecco's modified Eagle's medium (DMEM, with glucose and Ca(2+)), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
  •  
2.
  •  
3.
  • Berg, Camilla, et al. (författare)
  • Comparative study of technologies for tubule occlusion and treatment of dentin hypersensitivity
  • 2021
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to evaluate the occluding/remineralization performance and resistance to acid attacks of the mineralization layer formed by a tooth-desensitizing gel containing amorphous calcium magnesium phosphate (ACMP) particles and compare it to six other desensitizing products available on the market. Similar comprehensive studies are few and there is especially a lack of studies that are up to date. A dentin-disc model was used for in vitro evaluation of the desensitizing toothpastes/gels. Application of the products was performed twice daily for seven days. One set of specimens were evaluated using scanning electron microscopy (SEM) directly after the final treatment and another set was evaluated after an acid challenge, exposing specimens to 2 wt% citric acid. The ACMP desensitizing gel was the only product resulting in complete occlusion by the formation of mineralized material on the dentin surface and inside the tubules. Particle deposition was dominant after treatment with the other desensitizing products, with little or no mineralization, resulting in partial occlusion only. Sensodyne Repair & Protect and Oral-B Pro-Expert showed the highest resistance toward acid attacks. Material inside the tubules remained relatively unaffected by acid attacks in all specimens. The results in this study indicated a great variability among the occluding agents in terms of occlusion and acid resistance of the mineralization layer. The high degree of occlusion and intra-tubular mineralization that could mitigate the effect of acid solubilization indicate that the ACMP desensitizing gel may be a superior option for the treatment of dentin hypersensitivity.
  •  
4.
  • Byström, Joseph Lazraq, et al. (författare)
  • Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro
  • 2019
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of alpha TCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
  •  
5.
  • Dilshad, E., et al. (författare)
  • Synthesis of Functional Silver Nanoparticles and Microparticles with Modifiers and Evaluation of Their Antimicrobial, Anticancer, and Antioxidant Activity
  • 2020
  • Ingår i: Journal of Functional Biomaterials. - : MDPI AG. - 2079-4983. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An accumulating body of evidence reports the synthesis and biomedical applications of silver nanoparticles. However, the studies regarding the use of maleic acid and citric acid in the synthesis of nano-sized silver particles (AgNPs) and micro-sized silver particles (AgMPs) as well as their antibacterial, antifungal, and anticancer activities have not been reported. In the current study, we synthesized AgNPs and AgMPs using maleic acid and citric acid as capping agents and have characterized them by UV-Vis, energy-dispersive X-Ray spectroscopy (EDS), X-Ray diffraction (XRD), and scanning electron microscope (SEM) analysis. The capped silver particles were examined for their antimicrobial activity and cytotoxicity against bacteria, fungi, and brine shrimp. Additionally, the anticancer activity of these particles was tested against human breast and liver cancer cell lines. The free radical scavenging activity of capped silver particles was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. SEM analysis revealed a round plate-like morphology of maleic acid capped particles with an average size of 39 +/- 4 nm, whereas citric acid capped particles display flower-shaped morphology with rough surfaces and an average size of 250 +/- 5 nm. The uncapped AgMPs were hexagonal with 500 +/- 4 nm size. EDS and XRD analysis confirmed the presence of Ag and face-centered cubic crystalline nature, respectively. Functionally, capped silver particles exhibited antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus) and Gram-negative bacteria (Salmonella setubal, Enterobacter aerogenes, and Agrobacterium tumefaciens). The bactericidal activity was more active against Gram-negative bacteria with minimum inhibitory concentration (MIC) as low as 5 ppm as compared to 25 ppm for Gram-positive. Similarly, the silver particles demonstrated antifungal activity by inhibiting the growth of five fungal strains (Mucor species, Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, and Fusarium solani) up to 50% at the concentration of 500 ppm. Additionally, these particles showed substantial toxicity against brine shrimp and also significantly inhibited the proliferation of breast cancer (MCF7) and liver cancer (HePG2) cell lines (IC50 8.9-18.56 mu M). Uncapped AgMPs were less effective, inhibiting only the proliferation of MCF7 cells with IC50 46.54 mu M. Besides cytotoxicity, these particles acted as potential antioxidants, showing free radical scavenging up to 74.4% in a concentration-dependent manner. Taken together, our results showed that the modifiers affect the shape and size of silver particles and may, in part, contribute to the antimicrobial and antioxidant activity of silver particles. However, the contribution of maleic acid and citric acid in enhancing the antimicrobial, anticancer, and antioxidant potential independent of silver nano and microparticles needs to be studied further. In vivo experiments may determine the therapeutic effectiveness of silver particles capped with these modifiers.
  •  
6.
  • Ghajeri, Farnaz, et al. (författare)
  • The Influence of Residuals Combining Temperature and Reaction Time on Calcium Phosphate Transformation in a Precipitation Process
  • 2022
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation is one of the most common processes to synthesize hydroxyapatite, which is the human body’s mineral forming bone and teeth, and the golden bioceramic material for bone repair. Generally, the washing step is important in the precipitation method to remove the residuals in solution and to stabilize the phase transformation. However, the influence of residuals in combination with the reaction temperature and time, on calcium phosphate formation, is not well studied. This could help us with a better understanding of the typical synthesis process. We used a fixed starting ion concentration and pH in our study and did not adjust it during the reaction. XRD, FTIR, ICP-OES, and SEM have been used to analyze the samples. The results showed that combining residuals with both reaction temperature and time can significantly influence calcium phosphate formation and transformation. Dicalcium phosphate dihydrate formation and transformation are sensitive to temperature. Increasing temperature (60◦C) can inhibit the formation of acidic calcium phosphate or transform it to other phases, and further the particle size. It was also observed that high reaction temperature (60◦C) results in higher precipitation efficiency than room temperature. A low ion concentration combining reaction temperature and time could still significantly influence the calcium phosphate transformation during the drying. © 2022 by the authors. 
  •  
7.
  • Koh, Li Buay, et al. (författare)
  • Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes
  • 2013
  • Ingår i: Journal of Functional Biomaterials. - Basel, Switzerland : MDPI AG. - 2079-4983. ; 4:3, s. 162-177
  • Tidskriftsartikel (refereegranskat)abstract
    • A bi-functional epoxy-based cross-linker, 1,4-Butanediol diglycidyl ether (BDDGE), was investigated in the fabrication of collagen based corneal substitutes. Two synthetic strategies were explored in the preparation of the cross-linked collagen scaffolds. The lysine residues of Type 1 porcine collagen were directly cross-linked using l,4-Butanediol diglycidyl ether (BDDGE) under basic conditions at pH 11. Alternatively, under conventional methodology, using both BDDGE and 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as cross-linkers, hydrogels were fabricated under acidic conditions. In this latter strategy, Cu(BF4)2·XH2O was used to catalyze the formation of secondary amine bonds. To date, we have demonstrated that both methods of chemical cross-linking improved the elasticity and tensile strength of the collagen implants. Differential scanning calorimetry and biocompatibility studies indicate comparable, and in some cases, enhanced properties compared to that of the EDC/NHS controls. In vitro studies showed that human corneal epithelial cells and neuronal progenitor cell lines proliferated on these hydrogels. In addition, improvement of cell proliferation on the surfaces of the materials was observed when neurite promoting laminin epitope, IKVAV, and adhesion peptide, YIGSR, were incorporated. However, the elasticity decreased with peptide incorporation and will require further optimization. Nevertheless, we have shown that epoxy cross-linkers should be further explored in the fabrication of collagen-based hydrogels, as alternatives to or in conjunction with carbodiimide cross-linkers.
  •  
8.
  • Lewin, Susanne, et al. (författare)
  • Low-Modulus PMMA Has the Potential to Reduce Stresses on Endplates after Cement Discoplasty
  • 2022
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cement discoplasty has been developed to treat patients with advanced intervertebral disc degeneration. In discoplasty, poly(methylmethacrylate) (PMMA) bone cement is injected into the disc, leading to reduced pain and certain spinal alignment correction. Standard PMMA-cements have much higher elastic modulus than the surrounding vertebral bone, which may lead to a propensity for adjacent fractures. A PMMA-cement with lower modulus might be biomechanically beneficial. In this study, PMMA-cements with lower modulus were obtained using previously established methods. A commercial PMMA-cement (V-steady(R), G21 srl) was used as control, and as base cement. The low-modulus PMMA-cements were modified by 12 vol% (LA12), 16 vol% (LA16) and 20 vol% (LA20) linoleic acid (LA). After storage in 37 degrees C PBS from 24 h up to 8 weeks, specimens were tested in compression to obtain the material properties. A lower E-modulus was obtained with increasing amount of LA. However, with storage time, the E-modulus increased. Standard and low-modulus PMMA discoplasty were compared in a previously developed and validated computational lumbar spine model. All discoplasty models showed the same trend, namely a substantial reduction in range of motion (ROM), compared to the healthy model. The V-steady model had the largest ROM-reduction (77%), and the LA20 model had the smallest (45%). The average stress at the endplate was higher for all discoplasty models than for the healthy model, but the stresses were reduced for cements with higher amounts of LA. The study indicates that low-modulus PMMA is promising for discoplasty from a mechanical viewpoint. However, validation experiments are needed, and the clinical setting needs to be further considered.
  •  
9.
  • Mak, Wing Cheung, et al. (författare)
  • Controlled Delivery of Human Cells by Temperature Responsive Microcapsules
  • 2015
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 6:2, s. 439-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Persson, Cecilia (3)
Engqvist, Håkan, 197 ... (3)
Xia, Wei, Senior Lec ... (3)
Griffith, May (2)
Lopes, Viviana (2)
Larsson, Anders (1)
visa fler...
Wang, Jian-Sheng (1)
Phopase, Jaywant (1)
Tägil, Magnus (1)
Warfvinge, Gunnar (1)
Ubhayasekera, S.J. K ... (1)
Ilver, Lars, 1949 (1)
Manivel, Vivek Anand (1)
Adolfsson, Erik (1)
Welch, Ken, 1968- (1)
Strømme, Maria, 1970 ... (1)
Malmberg, Per, 1974 (1)
Partanen, J. (1)
Nawaz, Muhammad (1)
Mitra, Debbie (1)
Liedberg, Bo (1)
Ferraz, Natalia, 197 ... (1)
Hilborn, Jöns, 1956- (1)
Öhman-Mägi, Caroline (1)
Akmal, JS (1)
Salmi, M (1)
Mäkitie, A (1)
Björkstrand, R (1)
Fagerholm, Per (1)
Skog, Mårten (1)
Leifer, Klaus, 1965- (1)
Verma, Suresh K. (1)
Panda, Pritam Kumar, ... (1)
Lidgren, Lars (1)
Lindberg, Pia (1)
Truedsson, Anna (1)
Kohal, Ralf Joachim (1)
Lammi, Mikko, 1961- (1)
Katsaros, Ioannis (1)
Mak, Wing Cheung (1)
Mak, Wing Cheung, 19 ... (1)
Hong, Jaan (1)
Pujari-Palmer, Micha ... (1)
Försth, Peter, 1966- (1)
Jokinen, A. (1)
Berg, Camilla (1)
Krakhmalev, Pavel, P ... (1)
Sivlér, Petter (1)
Unosson, Erik, 1983- (1)
Nandi, Aditya (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Karolinska Institutet (4)
Linköpings universitet (3)
Göteborgs universitet (2)
Lunds universitet (2)
RISE (2)
visa fler...
Karlstads universitet (2)
Högskolan Kristianstad (1)
Umeå universitet (1)
Malmö universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Teknik (8)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy