SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2196 5404 "

Sökning: L773:2196 5404

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Joochan, et al. (författare)
  • 3D printed fluidic swab for COVID-19 testing with improved diagnostic yield and user comfort
  • 2023
  • Ingår i: NANO CONVERGENCE. - : SPRINGER. - 2196-5404. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 & mu;L of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.
  •  
2.
  • Sögaard, Christian, 1990, et al. (författare)
  • Silica sol as grouting material: a physio-chemical analysis
  • 2018
  • Ingår i: Nano Convergence. - : Springer Science and Business Media LLC. - 2196-5404. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.
  •  
3.
  • Wu, Zhimao, et al. (författare)
  • Nanofire and scale effects of heat
  • 2019
  • Ingår i: Nano Convergence. - : Springer. - 2196-5404. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Combustion is a chemical reaction that emits heat and light. Nanofire is a kind of flameless combustion that occurs on the micro-nano scale. Pt/Al2O3 film with a thickness of 20 nm can be prepared as a catalyst by micro-nano processing. When the methanol-air mixture gas passes through the surface of the catalyst, a chemical reaction begins and a significant temperature rise occurs in the catalyst region. Compared to macroscopic combustion, Nanofire has many special properties, such as large temperature gradients, uniform temperature distribution, and fast temperature response. The large temperature gradient is the most important property of Nanofire, which can reach 1330 K/mm. Combined with thermoelectric materials, it can realize the efficient conversion of chemical energy to electric energy. Nanoscale thickness offers the possibility of establishing thermal gradient. On the other hand, large thermal gradient has an effect on the transport properties of phonons and electrons in film materials. From these we can get the scale effects of heat. This article will provide an overview of the preparation, properties and applications of Nanofire, and then a comprehensive introduction to the thermal scale and thermal scale effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy