SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2212 8778 "

Sökning: L773:2212 8778

  • Resultat 1-10 av 97
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abreu-Vieira, Gustavo, 1987-, et al. (författare)
  • Integration of body temperature into the analysis of energy expenditure in the mouse
  • 2015
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 4:6, s. 461-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature.Methods: The effect of environmental temperature (4e33 C) on body temperature, energy expenditure, physical activity, and food intake invarious mice (chow diet, high-fat diet, Brs3-/y, lipodystrophic) was measured using continuous monitoring.Results: Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts ofenergy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-inducedthermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matchedthat calculated from the energy expenditure using Fourier’s law of heat conduction. Mice defended a higher body temperature during physicalactivity. The cost of the warmer body temperature during the active phase is 4e16% of total daily energy expenditure. Parameters measured indiet-induced obese and Brs3-/y mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in miceis via physiological mechanisms.Conclusions: At 22 C, cold-induced thermogenesis isw120% of basal metabolic rate. The higher body temperature during physical activity isdue to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with littlefrom fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring bodytemperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energyhomeostasis.
  •  
2.
  • Allu, P. K. R., et al. (författare)
  • FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation
  • 2023
  • Ingår i: Molecular Metabolism. - 2212-8778. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level.Methods: Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis.Results: Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle.Conclusion: These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.(c) 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
3.
  •  
4.
  • Alvarez-Crespo, Mayte, et al. (författare)
  • Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance
  • 2016
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 5:4, s. 271-282
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods: Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results: We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 degrees C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (browning) of inguinal white adipose tissue (iWAT). Conclusions: We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents.
  •  
5.
  •  
6.
  • Arevalo-Martinez, Marycarmen, et al. (författare)
  • miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 53
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results: We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts: Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions: miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients.
  •  
7.
  • Arora, Tulika, et al. (författare)
  • Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice
  • 2016
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 5:8, s. 725-730
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet (HFD). Methods: We transformed L. lactis FI5876 with either empty vector (pUK200) or murine GLP-1 expression vector to generate LL-UK200 and LL-GLP1, respectively, and determined their potential to induce insulin secretion by incubating primary islets from wild-type (WT) and GLP-1 receptor knockout (GLP1R-KO) mice with culture supernatant of these strains. In addition, we administered these strains to mice on chow or HFD. At the end of the study period, we measured plasma GLP-1 levels, performed intraperitoneal glucose tolerance and insulin tolerance tests, and determined hepatic expression of the gluconeogenic genes G6pc and Pepck. Results: Insulin release from primary islets of WT but not GLP1R-KO mice was higher following incubation with culture supernatant from LL-GLP1 compared with LL-UK200. In mice on chow, supplementation with LL-GLP1 versus LL-UK200 promoted increased vena porta levels of GLP1 in both WT and GLP1R-KO mice; however, LL-GLP1 promoted improved glucose tolerance in WT but not in GLP1R-KO mice, indicating a requirement for the GLP-1 receptor. In mice on HFD and thus with impaired glucose tolerance, supplementation with LL-GLP1 versus LL-UK200 promoted a pronounced improvement in glucose tolerance together with increased insulin levels. Supplementation with LL-GLP1 versus LL-UK200 did not affect insulin tolerance but resulted in reduced expression of G6pc in both chow and HFD-fed mice. Conclusions: The L. lactis strain genetically modified to produce GLP-1 is capable of stimulating insulin secretion from islets and improving glucose tolerance in mice. (C) 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
8.
  • Azzu, V., et al. (författare)
  • Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 48
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking. Methods and results: Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling. The modulation of these metabolic programmes was achieved by activating sterol regulatory element-binding protein (SREBP) transcriptional networks; however, it is still debated whether, in the context of NASH, activation of SREBPs acts as a pathogenic driver of lipotoxicity, or rather promotes the biosynthesis of protective lipids that buffer excessive lipid accumulation, preventing inflammation and fibrosis. To elucidate the pathophysiological role of SCAP/SREBP in NASH and wound-healing response, we used an Insig1 deficient (with hyper-efficient SREBPs) murine model challenged with a NASH-inducing diet. Despite enhanced lipid and cholesterol biosynthesis, Insig1 KO mice had similar systemic metabolism and insulin sensitivity to Het/WT littermates. Moreover, activating SREBPs resulted in remodelling the lipidome, decreased hepatocellular damage, and improved wound-healing responses. Conclusions: Our study provides actionable knowledge about the pathways and mechanisms involved in NAFLD pathogenesis, which may prove useful for developing new therapeutic strategies. Our results also suggest that the SCAP/SREBP/INSIG1 trio governs transcriptional programmes aimed at protecting the liver from lipotoxic insults in NASH. (C) 2021 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
9.
  • Baboota, Ritesh, et al. (författare)
  • Chronic hyperinsulinemia promotes human hepatocyte senescence
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. Methods: Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. Results: Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. Conclusion: Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin. 
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 97
Typ av publikation
tidskriftsartikel (93)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (94)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Zierath, JR (8)
Bäckhed, Fredrik, 19 ... (7)
Nedergaard, Jan (6)
Ruas, JL (6)
Krook, A (5)
Cannon, Barbara (5)
visa fler...
Mulder, Hindrik (5)
Correia, JC (5)
Martinez-Redondo, V (5)
Barres, R (5)
Porsmyr-Palmertz, M (4)
Eliasson, Lena (4)
Sinha, I (3)
Fex, Malin (3)
Bengtsson, Tore (3)
Arner, P (3)
Rorsman, Patrik, 195 ... (3)
Agudelo, LZ (3)
Cervenka, I (3)
Jannig, PR (3)
Molinaro, Antonio (3)
Massart, J. (3)
Boucher, Jeremie (3)
Caesar, Robert, 1973 (3)
Cedernaes, Jonathan (3)
Skibicka, Karolina P (3)
Mardinoglu, Adil (2)
Langenberg, C. (2)
Berggren, PO (2)
Tremaroli, Valentina ... (2)
Moritz, Thomas (2)
Adan, Roger A H (2)
Spégel, Peter (2)
Dickson, Suzanne L., ... (2)
Ling, Charlotte (2)
Ferreira, DMS (2)
Izadi, M (2)
Jastroch, Martin (2)
Ståhlman, Marcus, 19 ... (2)
Barbosa, TD (2)
Dahlman-Wright, K (2)
Kahn, C. R. (2)
Alm, PS (2)
Benedict, Christian (2)
Strawbridge, RJ (2)
Lindgren, CM (2)
Benedict, Christian, ... (2)
Csikasz, Robert I. (2)
Teixeira, AI (2)
Lindén, Daniel, 1971 (2)
visa färre...
Lärosäte
Karolinska Institutet (31)
Göteborgs universitet (26)
Stockholms universitet (15)
Lunds universitet (14)
Uppsala universitet (8)
Umeå universitet (4)
visa fler...
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (97)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (65)
Naturvetenskap (11)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy