SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2329 7778 OR L773:2329 7778 "

Sökning: L773:2329 7778 OR L773:2329 7778

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amini, Kasra, et al. (författare)
  • Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization
  • 2018
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
  •  
2.
  • Aquila, A., et al. (författare)
  • The linac coherent light source single particle imaging road map
  • 2015
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense femtosecond x-ray pulses from free-electron laser sources allow the imag-ing of individual particles in a single shot. Early experiments at the Linac CoherentLight Source (LCLS) have led to rapid progress in the field and, so far, coherentdiffractive images have been recorded from biological specimens, aerosols, andquantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLSheld a workshop to discuss the scientific and technical challenges for reaching theultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap towardreaching atomic resolution, 3D imaging at free-electron laser sources.
  •  
3.
  • Bengtsson, Å U J, et al. (författare)
  • Repetitive non-thermal melting as a timing monitor for femtosecond pump/probe X-ray experiments
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:5, s. 054303-054303
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved optical pump/X-ray probe experiments are often used to study structural dynamics. To ensure high temporal resolution, it is necessary to monitor the timing between the X-ray pulses and the laser pulses. The transition from a crystalline solid material to a disordered state in a non-thermal melting process can be used as a reliable timing monitor. We have performed a study of the non-thermal melting of InSb in single-shot mode, where we varied the sample temperature in order to determine the conditions required for repetitive melting. We show how experimental conditions affect the feasibility of such a timing tool.
  •  
4.
  • Bielecki, Johan, et al. (författare)
  • Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
  •  
5.
  • Blachucki, W., et al. (författare)
  • Inception of electronic damage of matter by photon-driven post-ionization mechanisms
  • 2019
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • "Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.
  •  
6.
  • Chung, Simon, et al. (författare)
  • Transient heating of Pd nanoparticles studied by x-ray diffraction with time of arrival photon detection
  • 2024
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsed laser heating of an ensemble of Pd nanoparticles, supported by a MgO substrate, is studied by x-ray diffraction. By time-resolved Bragg peak shift measurements due to thermal lattice expansion, the transient temperature of the Pd nanoparticles is determined, which quickly rises by at least 100 K upon laser excitation and then decays within 90 ns. The diffraction experiments were carried out using a Cu x-ray tube, giving continuous radiation, and the hybrid pixel detector Timepix3 operating with single photon counting in a time-of-arrival mode. This type of detection scheme does not require time-consuming scanning of the pump-probe delay. The experimental time resolution is estimated at 15 +/- 5 ns, which is very close to the detector's limit and matches with the 7 ns laser pulse duration. Compared to bulk metal single crystals, it is discussed that the maximum temperature reached by the Pd nanoparticles is higher and their cooling rate is lower. These effects are explained by the oxide support having a lower heat conductivity.
  •  
7.
  • Dell'Angela, M., et al. (författare)
  • Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer
  • 2015
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
  •  
8.
  • Engel, Robin Y., et al. (författare)
  • Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser
  • 2023
  • Ingår i: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L-3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm(2). We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.
  •  
9.
  • Fransson, Thomas, et al. (författare)
  • Effects of x-ray free-electron laser pulse intensity on the Mn K beta(1,3) x-ray emission spectrum in photosystem II-A case study for metalloprotein crystals and solutions
  • 2021
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and K beta x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the K beta XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn K beta(1,3) XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from & SIM;5 x 10(15) to 5 x 10(17) W/cm(2) at a pulse length of & SIM;35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.& nbsp;
  •  
10.
  • Fransson, Thomas, et al. (författare)
  • Effects of x-ray free-electron laser pulse intensity on the Mn K β 1,3x-ray emission spectrum in photosystem II - A case study for metalloprotein crystals and solutions
  • 2021
  • Ingår i: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kβ x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kβ XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kβ1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47
Typ av publikation
tidskriftsartikel (47)
Typ av innehåll
refereegranskat (47)
Författare/redaktör
Alonso-Mori, Roberto (4)
Bergmann, Uwe (4)
Larsson, J. (3)
Katona, Gergely, 197 ... (3)
Caleman, Carl (3)
WULFF, M (3)
visa fler...
Larsson, Jörgen (3)
Kern, Jan (3)
Sokaras, Dimosthenis (3)
Yachandra, Vittal K. (3)
Yano, Junko (3)
Westenhoff, Sebastia ... (3)
Neutze, Richard, 196 ... (3)
Odelius, Michael (3)
Messinger, Johannes, ... (3)
Wang, Xiaocui (3)
Jurgilaitis, A (3)
Weninger, Clemens (3)
Sundström, Villy (2)
Lundberg, Marcus, 19 ... (2)
Mancuso, Adrian P. (2)
Jurgilaitis, Andrius (2)
Graafsma, Heinz (2)
Hajdu, Janos (2)
Techert, Simone (2)
Zouni, Athina (2)
Küpper, Jochen (2)
Weissenrieder, Jonas (2)
Nordlund, D (2)
Barty, A. (2)
Santra, R. (2)
Vacher, Morgane (2)
Kroon, D. (2)
Cheah, Mun Hon (2)
Wahlgren, Weixiao Yu ... (2)
Ibrahim, Mohamed (2)
Wernet, Philippe, 19 ... (2)
Kowalewski, Markus, ... (2)
Ekström, J C (2)
Pham, Van-Thai (2)
Katayama, Tetsuo (2)
Berntsson, Oskar, 19 ... (2)
Panman, Matthijs R, ... (2)
Beye, M (2)
Schlotter, W. F. (2)
Turner, J. J. (2)
Simon, Philipp S. (2)
Bogacz, Isabel (2)
Hussein, Rana (2)
Zhang, Miao (2)
visa färre...
Lärosäte
Uppsala universitet (18)
Lunds universitet (15)
Göteborgs universitet (10)
Kungliga Tekniska Högskolan (7)
Stockholms universitet (7)
Umeå universitet (3)
visa fler...
Mittuniversitetet (2)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (47)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy