SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2366 9608 "

Sökning: L773:2366 9608

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yaqi, et al. (författare)
  • Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendrite-free Lithium Anode
  • 2022
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium metal has been considered as the most promising anode material due to its distinguished specific capacity of 3860 mAh g–1 and the lowest reduction potential of -3.04 V versus the Standard Hydrogen Electrode. However, the practicalization of Li-metal batteries (LMBs) is still challenged by the dendritic growth of Li during cycling, which is governed by the surface properties of the electrodepositing substrate. Herein, a surface modification with indium oxide on the copper current collector via magnetron sputtering, which can be spontaneously lithiated to form a composite of lithium indium oxide and Li-In alloy, is proposed. Thus, the growth of Li dendrites is effectively suppressed via regulating the inner Helmholtz plane modified with LiInO2 to foster the desolvation of Li-ion and induce the nucleation of Li-metal in two-dimensions through electro-crystallization with Li-In alloy. Using the In2O3 modification, the Li-metal anode exhibits outstanding cyclic stability, and LMBs with lithium cobalt oxide cathode present excellent capacity retention (above 80% over 600 cycles). Enlightening, the scalable magnetron sputtering method reported here paves a novel way to accelerate the practical application of the Li anode in LMBs to pursue higher energy density.
  •  
2.
  • Děkanovský, Lukáš, et al. (författare)
  • Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor
  • 2023
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 7:818
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3C2, Nb2C, and V2C), coated with functional and charged organic molecules (zwitterions—ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems.
  •  
3.
  • Eswaran, Muthusankar, 1988, et al. (författare)
  • A Road Map toward Field-Effect Transistor Biosensor Technology for Early Stage Cancer Detection
  • 2022
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Field effect transistor (FET)-based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET-based devices in cancer diagnostics, several key issues need to be addressed: sensitivity, selectivity, operational conditions, anti-interference, reusability, reproducibility, disposability, large-scale production, and economic viability. To address these well-known issues, significant research efforts have been made recently. An overview of these efforts is provided here, highlighting the approaches and strategies presently engaged at each developmental stage, from the design and fabrication of devices to performance evaluation and data analysis. Specifically, this review discusses the multistep fabrication of FETs, choice of bioreceptors for relevant biomarkers, operational conditions, measurement configuration, and outlines strategies to improve the sensing performance and reach the level required for clinical applications. Finally, this review outlines the expected progress to the future generation of FET-based diagnostic devices and discusses their potential for detection of cancer biomarkers as well as biomarkers of other noncommunicable and communicable diseases.
  •  
4.
  • Fan, Qunping, 1989, et al. (författare)
  • Weak Makes It Powerful: The Role of Cognate Small Molecules as an Alloy Donor in 2D/1A Ternary Fullerene Solar Cells for Finely Tuned Hierarchical Morphology in Thick Active Layers
  • 2020
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, a novel small molecule donor is first developed, FSM6, which is a cognate molecule to BTR possessing similar molecular structure with comparable optical absorption but different crystallinity. The efficient fullerene-type ternary small molecular solar cells (SMSCs) based on an alloy donor of BTR and FSM6 in a thick film of 250 nm reveal the improved hierarchical phase separation morphology and molecular structural order of ternary active layers with improved crystallinity of the key donor component BTR. Furthermore, FSM6 as the key third component also plays a role of charge transfer accelerator in ternary SMSCs. As a result, the optimal ternary SMSCs based on BTR:FSM6:PC71BM achieve a high power conversion efficiency (PCE) up to 10.21% with the synergistically improved open-circuit voltage of 0.950 V, short-circuit current density of 13.85 mA cm(-2), and fill factor of 77.6%, in comparison with either the binary SMSCs of BTR:PC71BM (PCE = 9.37%) or FSM6:PC71BM (PCE = 8.00%). This work provides a promising methodology to optimize device morphology for high-performance ternary SMSCs by combining two cognate small molecules with similar absorption spectra but different crystallinity as an alloy donor.
  •  
5.
  • Goossens, Nick, et al. (författare)
  • Upscaled Synthesis Protocol for Phase-Pure, Colloidally Stable MXenes with Long Shelf Lives
  • 2023
  • Ingår i: Small Methods. - : WILEY-V C H VERLAG GMBH. - 2366-9608.
  • Tidskriftsartikel (refereegranskat)abstract
    • MXenes are electrically conductive 2D transition metal carbides/nitrides obtained by the etching of nanolaminated MAX phase compounds, followed by exfoliation to single- or few-layered nanosheets. The mainstream chemical etching processes have evolved from pure hydrofluoric acid (HF) etching into the innovative "minimally intensive layer delamination" (MILD) route. Despite their current popularity and remarkable application potential, the scalability of MILD-produced MXenes remains unproven, excluding MXenes from industrial applications. This work proposes a "next-generation MILD" (NGMILD) synthesis protocol for phase-pure, colloidally stable MXenes that withstand long periods of dry storage. NGMILD incorporates the synergistic effects of a secondary salt, a richer lithium (Li) environment, and iterative alcohol-based washing to achieve high-purity MXenes, while improving etching efficiency, intercalation, and shelf life. Moreover, NGMILD comprises a sulfuric acid (H2SO4) post-treatment for the selective removal of the Li3AlF6 impurity that commonly persists in MILD-produced MXenes. This work demonstrates the upscaled NGMILD synthesis of (50 g) phase-pure Ti(3)C(2)Tz MXene clays with high extraction yields (>22%) of supernatant dispersions. Finally, NGMILD-produced MXene clays dry-stored for six months under ambient conditions experience minimal degradation, while retaining excellent redispersibility. Overall, the NGMILD protocol is a leap forward toward the industrial production of MXenes and their subsequent market deployment.
  •  
6.
  • Ibrahim, Kassa Belay, et al. (författare)
  • Confinement Accelerates Water Oxidation Catalysis : Evidence from In Situ Studies
  • 2023
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Basic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first-row transition metal-based catalysts present state-of-the-art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first-row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex-SnS2) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un-confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm−2 and Tafel slope as low as 93 mV dec−1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low-cost electrocatalysts.
  •  
7.
  • Kang, Hyokyeong, et al. (författare)
  • Relaxation of Stress Propagation in Alloying-Type Sn Anodes for K-Ion Batteries
  • 2024
  • Ingår i: Small Methods. - 2366-9608. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alloying-type metallic tin is perceived as a potential anode material for K-ion batteries owing to its high theoretical capacity and reasonable working potential. However, pure Sn still face intractable issues of inferior K+ storage capability owing to the mechanical degradation of electrode against large volume changes and formation of intermediary insulating phases K4Sn9 and KSn during alloying reaction. Herein, the TiC/C–carbon nanotubes (CNTs) is prepared as an effective buffer matrix and composited with Sn particles (Sn–TiC/C–CNTs) through the high-energy ball-milling method. Owing to the conductive and rigid properties, the TiC/C–CNTs matrix enhances the electrical conductivity as well as mechanical integrity of Sn in the composite material and thus ultimately contributes to performance supremacy in terms of electrochemical K+ storage properties. During potassiation process, the TiC/C–CNTs matrix not only dissipates the internal stress toward random radial orientations within the Sn particle but also provides electrical pathways for the intermediate insulating phases; this tends to reduce microcracking and prevent considerable electrode degradation.
  •  
8.
  • Knoepp, Fenja, et al. (författare)
  • A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia
  • 2021
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to sense changes in oxygen availability is fundamentally important for the survival of all aerobic organisms. However, cellular oxygen sensing mechanisms and pathologies remain incompletely understood and studies of acute oxygen sensing, in particular, have produced inconsistent results. Current methods cannot simultaneously measure the key cellular events in acute hypoxia (i.e., changes in redox state, electrophysiological properties, and mechanical responses) at controlled partial pressures of oxygen (pO2). The lack of such a comprehensive method essentially contributes to the discrepancies in the field. A sealed microfluidic system that combines i) Raman spectroscopy, ii) patch-clamp electrophysiology, and iii) live-cell imaging under precisely controlled pO2 have therefore been developed. Merging these modalities allows label-free and simultaneous observation of oxygen-dependent alterations in multiple cellular redox couples, membrane potential, and cellular contraction. This technique is adaptable to any cell type and allows in-depth insight into acute oxygen sensing processes underlying various physiologic and pathologic conditions. 
  •  
9.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends
  • 2021
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 5:10, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.
  •  
10.
  • Lundstedt, Anna, et al. (författare)
  • White-light photoassisted covalent functionalization of graphene using 2-propanol
  • 2017
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 1:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, a photochemical method for functionalization of graphene using 2-propanol is reported. The functionalization method which is catalyst-free operates at ambient temperature in neat 2-propanol under an inert atmosphere of argon. The equipment requirement is a white-light source for the irradiation. The same methodology when applied to kish graphite results in a novel material, exhibiting significantly higher wettability than the starting material according to water contact angle measurements. Furthermore, the materials generated from both graphene and kish graphite exhibit increased adhesion energy, attributed to the fixation of isopropyl alcohol fragments onto graphene and graphite, respectively. The presence of hydroxyl groups and the possibility for further reactions on the functionalized graphene material are demonstrated through a substitution reaction with thionyl chloride, where the hydroxyl groups are replaced with chlorides, as confirmed through X-ray photoelectron spectroscopy analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (19)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vomiero, Alberto (2)
Xiong, Shizhao, 1985 (2)
Moretti, Elisa (2)
Dobryden, Illia (2)
Sirringhaus, Henning (2)
Kohonen, P (1)
visa fler...
Reiser, Alain (1)
Inganäs, Olle (1)
McCulloch, Iain (1)
Mijakovic, Ivan, 197 ... (1)
Rahimi, Shadi, 1982 (1)
Liu, Feng (1)
Claesson, Per M. (1)
Andersson, Anders (1)
Pandit, Santosh, 198 ... (1)
Jiang, X. (1)
Bergman, Joakim (1)
Zhang, Fengling (1)
Sarimveis, H (1)
Grafstrom, R (1)
Nymark, P (1)
Hwang, Jang Yeon (1)
Sun, Yang Kook (1)
Sun, Licheng, 1962- (1)
Jung, Hun Gi (1)
Kim, Jaekook (1)
Olsson, Eva, 1960 (1)
Akbar, Kamran (1)
Ali, Hasan (1)
Roth, Stephan V. (1)
Barroso-Martín, Isab ... (1)
Rodríguez-Castellón, ... (1)
Li, Hu, 1986- (1)
Leifer, Klaus, 1965- (1)
Wang, Ergang, 1981 (1)
Persson, Per O A (1)
Ramser, Kerstin (1)
Alsufyani, Maryam (1)
Ottosson, Henrik (1)
Yu, Ze (1)
Zhang, Rui (1)
Moons, Ellen, profes ... (1)
Wahl, Joel (1)
Knowles, Tuomas P.J. (1)
Gao, Feng (1)
Yang, D. (1)
Liu, Jian (1)
Zeng, Lunjie, 1983 (1)
Papadakis, Raffaello (1)
Tunca, Bensu (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (6)
Kungliga Tekniska Högskolan (4)
Luleå tekniska universitet (3)
Stockholms universitet (3)
Linköpings universitet (2)
RISE (2)
visa fler...
Uppsala universitet (1)
Lunds universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Teknik (7)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy